College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 41P
(a)
To determine
The Solenoid’s inductance
( L )
(b)
To determine
To determine: The rate at which current must change through it to produce an emf of 75 mV.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A solenoid of radius 2.70 cm has 680 turns and a length of 25.0 cm.
(a) Find its inductance.
mH
(b) Find the rate at which current must change through it to produce an emf of 60.0 mV. (Enter the magnitude.)
A/s
A solenoid of radius 3.5 cm has 500 turns and a length of 25 cm.
(A)Find its inductance.
?mH
(b) Find the rate at which current must change through it to produce an emf of 50 mV. (Enter the magnitude.)
?A/s
A solenoid of radius 4.5 cm has 620 turns and a length of 15 cm.
(a) Find its inductance. mH(b) Find the rate at which current must change through it to produce an emf of 80 mV. (Enter the magnitude.) A/s
Chapter 20 Solutions
College Physics
Ch. 20.2 - Prob. 20.1QQCh. 20.2 - A bar magnet is falling toward the center of a...Ch. 20.2 - Two circular loops are side by side and lie in the...Ch. 20.3 - A horizontal metal bar oriented east-west drops...Ch. 20.3 - You intend to move a rectangular loop of wire into...Ch. 20.6 - Prob. 20.6QQCh. 20 - A bar magnet is held stationary while a circular...Ch. 20 - Does dropping a magnet down a copper tube produce...Ch. 20 - Figure CQ20.3 shows three views of a circular loop...Ch. 20 - A loop of wire is placed in a uniform magnetic...
Ch. 20 - As the conducting bar in Figure CQ20.5 moves to...Ch. 20 - How is electrical energy produced in dams? (That...Ch. 20 - Figure CQ20.7 shows a slidewire generator with...Ch. 20 - As the bar in Figure CQ20.5 moves perpendicular to...Ch. 20 - Eddy current are induced currents set up in a...Ch. 20 - The switch S in Figure 20.27 is closed at t = 0...Ch. 20 - A piece of aluminum is dropped vertically downward...Ch. 20 - When the switch in Figure CQ20.12a is closed, a...Ch. 20 - Prob. 13CQCh. 20 - A magneto is used to cause the spark in a spark...Ch. 20 - A uniform magnetic field of magnitude 0.50 T is...Ch. 20 - Find the flux of Earths magnetic field of...Ch. 20 - Prob. 3PCh. 20 - A long, straight wire carrying a current of 2.00 A...Ch. 20 - Prob. 5PCh. 20 - A magnetic field of magnitude 0.300 T is oriented...Ch. 20 - A cube of edge length = 2.5 cm is positioned as...Ch. 20 - Transcranial magnetic stimulation (TMS) is a...Ch. 20 - Three loops of wire move near a long straight wire...Ch. 20 - The flexible loop in Figure P20.10 has a radius of...Ch. 20 - Inductive charging is used to wirelessly charge...Ch. 20 - Medical devices implanted inside the body are...Ch. 20 - A technician wearing a circular metal band on his...Ch. 20 - In Figure P20.14, what is the direction of the...Ch. 20 - Prob. 15PCh. 20 - Find the direction of the current in the resistor...Ch. 20 - A circular loop of wire lies below a long wire...Ch. 20 - A square, single-turn wire loop = 1.00 cm on a...Ch. 20 - Prob. 19PCh. 20 - A circular coil enclosing an area of 100 cm2 is...Ch. 20 - To monitor the breathing of a hospital patient, a...Ch. 20 - An N-turn circular wire coil of radius r lies in...Ch. 20 - A truck is carrying a steel beam of length 15.0 m...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - In one of NASAs space tether experiments, a...Ch. 20 - Prob. 27PCh. 20 - An astronaut is connected to her spacecraft by a...Ch. 20 - Prob. 29PCh. 20 - Prob. 30PCh. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - Considerable scientific work is currently under...Ch. 20 - A flat coil enclosing an area of 0.10 m2 is...Ch. 20 - A generator connected to the wheel or hub of a...Ch. 20 - A motor has coils with a resistance of 30.0 and...Ch. 20 - A coil of 10.0 turns is in the shape of an eclipse...Ch. 20 - Prob. 38PCh. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - An emf of 24.0 mV is induced in a 500-turn coil...Ch. 20 - Prob. 43PCh. 20 - Prob. 44PCh. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Prob. 49PCh. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - Additional Problems Two circular loop of wire...Ch. 20 - Prob. 54APCh. 20 - Prob. 55APCh. 20 - Prob. 56APCh. 20 - An 820-turn wire coil of resistance 24.0 is...Ch. 20 - A spacecraft is in 4 circular orbit of radius...Ch. 20 - Prob. 59APCh. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - The magnetic field shown in Figure P20.63 has a...Ch. 20 - Prob. 64APCh. 20 - In Figure P20.65 the rolling axle of length 1.50 m...Ch. 20 - An N-turn square coil with side and resistance R...Ch. 20 - A conducting rectangular loop of mass M,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose that a rectangular toroid has 2000 windings and a self-inductance of 0.040 H. If h = 0.10 m, what is the current flowing through a rectangular toroid when the energy in its magnetic field is 2.0 × 10-6 J?arrow_forwardWhat is the self-inductance per meter of a coaxial cable whose inner radius is 0.50 mm and whose outer radius is 4.00 mm?arrow_forwardA solenoid of radius 2.30 cm has 480 turns and a length of 15.0 cm. (a) Find its inductance. Apply the expression for the inductance of a solenoid. mH (b) Find the rate at which current must change through it to produce an emf of 90.0 mV. (Enter the magnitude.) A/sarrow_forward
- A solenoid having an inductance of 6.30 mH is connected in series with a 1.20 k resistor. (a) If a 14.0 V battery is connected across the pair, how long will it take for the current through the resistor to reach 80.0% of its final value? (b) What is the current through the resistor at time t = 1.0tL?arrow_forwardAn inductor has a current I(t) = (0.480 A) cos[(260 s-1)t] flowing through it. If the maximum emf %3D across the inductor is equal to 0.530 V, what is the self-inductance of the inductor, in mH? A 110-V hair dryer is rated at 1200 W. What current will it draw when operating from a 110-V electrical outlet? A small glass bead has been charged to 4.5 nC. What is the magnitude of the electric field 2.0 cm from the center of the bead? (k = 1/4nE 0 = 8.99 x 10° N. m2/C2) %3Darrow_forwardThe heating coils in a hair dryer are 0.800 cm in diameter, have a combined length of 1.00 m, and a total of 395 turns. a) What is their total self-inductance (in H) assuming they act like a single solenoid? b) How much energy (in J) is stored in them when 10.0 A flows? and c) What average emf (in mV) opposes shutting them off if this is done in 4.17 ms (one-fourth of a cycle for 60 Hz AC)?arrow_forward
- Find the rate at which current must change through a solenoid to produce an emf of 75.0 mV if its inductance is 1.97 mH.arrow_forwardA solenoid of radius 2.30 cm has 440 turns and a length of 25.0 cm. (a) Find its inductance.(b) Find the rate at which current must change through it to produce an emf of 70.0 mV. (Enter the magnitude.)arrow_forwardThe heating coils in a hair dryer are 0.800 cm in diameter, have a combined length of 1.00 m, and a total of 405 turns. (a) What is their total self-inductance (in H) assuming they act like a single solenoid? H (b) How much energy (in J) is stored in them when 12.0 A flows? (c) What average emf (in mV) opposes shutting them off if this is done in 4.17 ms (one-fourth of a cycle for 60 Hz AC)?arrow_forward
- A solenoid of radius 2.09 cm has 405 turns and a length of 19.9 cm. Calculate its inductance. Calculate the rate at which current must change through it to produce an emf of 81.9 mV.arrow_forwardPt 1) A solenoid of radius 3.5 cm has 560 turns and a length of 25 cm. (a) Find its inductance. mH (b) Find the rate at which current must change through it to produce an emf of 60 mV. (Enter the magnitude.) A/s Pt 2) A 299 turn solenoid has a radius of 5.15 cm and a length of 19.5 cm. (a) Find the inductance of the solenoid. mH (b) Find the energy stored in it when the current in its windings is 0.498 A. mJarrow_forwardThe inductor shown in Fig. has inductance 0.260 H and carries a current in the direction shown. The current is changing at a constant rate. (a) The potential between points a and b is Vab = 1.04 V, with point a at higher potential. Is the current increasing or decreasing? (b) If the current at t = 0 is 12.0 A, what is the current at t = 2.00 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning