Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337671729
Author: SERWAY
Publisher: Cengage
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 20, Problem 39AP

(a)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 .

(a)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 is 1.09×103 .

Explanation of Solution

Given information:Value of average speed is vmp50.0 .

Write the expression for the Maxwell-Boltzmann speed distribution function,

Nv=4πN(m02πkBT)32v2e(m0v22kBT) (1)

Here,

Nv is the Maxwell-Boltzmann speed distribution function.

N is the total number of molecules of gas.

T is the absolute temperature of gas.

v is the speed of the fraction of molecules of gas.

kB is the Boltzmann constant.

m0 is the mass of the gas molecule.

Write the expression for the average speed of a gas molecule.

v=8kBTπm0

Here,

v is the average speed of a gas molecule.

Write the expression for the most probable speed of a gas molecule.

vmp=2kBTm0

Here,

vmp is the most probable speed of a gas molecule.

Formula to calculate the numerical value of the Nv(v)Nv(vmp) using equation(1).

Nv(v)Nv(vmp)=4πN(m02πkBT)32v2e(m0v22kBT)4πN(m02πkBT)32vmp2e(m0vmp22kBT)=(vvmp)2e(m0vmp22kBTm0v22kBT)=(vvmp)2em0vmp22kBT(1(vvmp)2) (2)

Substitute 2kBTm0 for vmp in equation (2) to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vvmp)2em0(2kBTm0)22kBT(1(vvmp)2)=(vvmp)2e(1(vvmp)2) (3)

Substitute vmp50.0 for v in equation (3) to find Nv(v)Nv(vmp) ,

Nv(v)Nv(vmp)=(vmp50.0vmp)2e(1(vmp50.0vmp)2)=1.0868×1031.09×103

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 is 1.09×103 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 is 1.09×103 .

(b)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 .

(b)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 is 2.69×102 .

Explanation of Solution

Given information: Value of average speed is vmp10.0 .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute vmp10.0 for v in above expression to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vmp10.0vmp)2e(1(vmp10.0vmp)2)=2.69×102

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 is 2.69×102 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 is 2.69×102 .

(c)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 .

(c)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 is 0.529 .

Explanation of Solution

Given information: Value of average speed is vmp2.00 .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute vmp2.00 for v in equation (3) to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vmp2.00vmp)2e(1(vmp2.00vmp)2)=0.529

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 is 0.529 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 is 0.529 .

(d)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp .

(d)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp is 1.00 .

Explanation of Solution

Given information: Value of average speed is vmp .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute vmp for v in above expression to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vmpvmp)2e(1(vmpvmp)2)=1.00

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp is 1.00 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp is 1.00 .

(e)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp .

(e)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp is 0.199 .

Explanation of Solution

Given information: Value of average speed is 2.00vmp .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute 2.00vmp for v in above expression to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(2.00vmpvmp)2e(1(2.00vmpvmp)2)=0.199

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp is 0.199 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp is 0.199 .

(f)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp .

(f)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp is 1.01×1041 .

Explanation of Solution

Given information: Value of average speed is 10.0vmp .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute 10.0vmp for v in above expression to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(10.0vmpvmp)2e(1(10.0vmpvmp)2)=1.01×1041

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp is 1.01×1041 .

Conclusion:

Therefore, thenumerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp is 1.01×1041 .

(g)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp .

(g)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp is 1.25×101082

Explanation of Solution

Given information: Value of average speed is 50.0vmp .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute 50.0vmp for v in above equation to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(50.0vmpvmp)2e(1(50.0vmpvmp)2)=1.25×101082

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp is 1.25×101082 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp is 1.25×101082 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You have just bought a new bicycle. On your first riding trip, it seems that the bike comes to rest relatively quickly after you stop pedaling and let the bicycle coast on flat ground. You call the bicycle shop from which you purchased the vehicle and describe the problem. The technician says that they will replace the bearings in the wheels or do whatever else is necessary if you can prove that the frictional torque in the axle of the wheels is worse than -0.02 N . m. At first, you are discouraged by the technical sound of what you have been told and by the absence of any tool to measure torque in your garage. But then you remember that you are taking a physics class! You take your bike into the garage, turn it upside down and start spinning the wheel while you think about how to determine the frictional torque. The driveway outside the garage had a small puddle, so you notice that droplets of water are flying off the edge of one point on the tire tangentially, including drops that…
2nd drop down is "up" or "down"
Romeo (79.0 kg) entertains Juliet (57.0 kg) by playing his guitar from the rear of their boat at rest in still water, 2.70 m away from Juliet, who is in the front of the boat. After the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a kiss on Romeo's cheek. (a) How far (in m) does the 81.0 kg boat move toward the shore it is facing? m (b) What If? If the lovers both walk toward each other and meet at the center of the boat, how far (in m) and in what direction does the boat now move? magnitude m direction ---Select---

Chapter 20 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY