Concept explainers
(a)
To Calculate:The thermal current in each cube.
(a)
Answer to Problem 37P
The thermal current in copper cube is approximately
The thermal current in aluminum cube is approximately
Explanation of Solution
Given:
Thermal
Areaof cross-section of copper,
Temperature difference,
Thermal conductivity of aluminum,
Areaof cross-section of aluminum,
Formula used: The amount of heat
Here, L the thickness of the substance. The cross-section area of the substance,
temperature difference among the ends of the substance and k the thermal conductivity of thesubstance.
The thermal resistance is given by:
Then the equation (1) is written as
Here, the thermal current
Calculation:
The thermal current within each cube, is expressed as follows:
The thermal resistance of each cube is:
By using the equation (2), the thermal current through the copper can be expressed as follows:
By using the equation (2), the thermal current through the Aluminum can be expressed asfollows:
Hence, the thermal current in aluminum cube is approximately
Conclusion: The thermal current in each cube is to be calculated by using temperature difference and thermal conductivity.
(b)
To Calculate: The total thermal current.
(b)
Answer to Problem 37P
The total thermal current is
Explanation of Solution
Given:Current passing through the copper
Current passing through the aluminum
Formula used:
Given that the cubes are in parallel, therefore total thermal current can be expressed as:
Calculation:
Substitute the values and solve:
Conclusion: Hence,the total thermal current is
(c)
To Calculate:The thermal resistance of two cube combination.
(c)
Answer to Problem 37P
The equivalent thermal resistance is
Explanation of Solution
Given:The temperature difference
Formula used:
The equivalent thermal resistance is obtained by:
Where,
Calculation:
Substitute the values and solve:
Hence, the equivalent thermal resistance is
Conclusion:Equivalent thermal resistance can be calculated using temperature difference and thermal current.
Want to see more full solutions like this?
Chapter 20 Solutions
Physics for Scientists and Engineers
- A walrus transfers energy by conduction through its blubber at the rate of 150 W when immersed in -1.00C water. The walrus’s internal core temperature is 37.0C, and it has a surface area of 2.00m. What is the average thickness of its blubber, which has the conductivity of fatty tissues without blood?arrow_forwardShow that the thermal resistance of a rectangular enclosure can be expressed as R = Lc /(Ak Nu), where k is the thermal conductivity of the fluid in the enclosure.arrow_forwardYou have a pure copper electrical wire with a diameter of 0.205cm and an electrical resistance of 0.0053Ω/m. The wire is exposed to uniform convection of T_inf = 22.0°C, h_inf = 15.0 W/(m2-K). At steady-state conditions the wire carries 21.0 amps of current through it. Determine both the surface temperature and the maximum temperature of the wire.arrow_forward
- A heat conducting rod, 0.90 m long, is made of an aluminum section that is 0.10 m long, and an unknown material section that is 0.80 m long. Both sections have the same cross-sectional area. The aluminum end (rod 2) is maintained at a temperature of 50°C and the unknown material end (rod 1) is at 150°CTThe thermal conductivity of aluminum is 205 W/m-K and the junction temperature is 65°C. Steady state has been reached, and no heat is lost through the well-insulated sides of the rod. Find the thermal conductivity (k) of the unknown material. H T Rod 2 Rod 1arrow_forwardA 2.44 m wide by 1.15 m high metal plate must be insulated to prevent contact burn injuries. If the heat transfer rate is 125 W and the temperature across the insulation must be reduced from 88.3°C to 40.7°C, what is the minimum thickness (in cm) of insulation required [round your final answer to two decimal places]? {kins = 0.035 W/m-K} Insulation Н W Larrow_forwardFrom the figure, System A and C are in thermal equilibrium. System B and C are in thermal equilibrium. Is System A and B in thermal equilibrium? Insulator ... System A System B System Conductor Conductor A) Yes в) No It depends D) Applicable in all situationsarrow_forward
- The thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m K and 0.020 W/m · K respectively, while other tissues inslde the body have conductivities of about 0.50 W/m · K. Assume that between the core region of the body and the skin surface lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. Rakin m2. K/W Rat m2 . K/W Rissue m2. K/W m2- K/W (b) Find the rate of energy loss when the core temperature is 37°C and the exterior temperature is 0°C. Assume that both a protective layer of clothing and an insulating layer of unmoving air are absent, and a body area of 2.0 m.arrow_forwardYou are insulating a metal pipe carrying a hot fluid. The outside Diameter of the pipe is 3.5 cm, and the pipe has a length of 7.7 meters. Due to the fluid inside the pipe, the outside surface of the metal fluid pipe is kept at a constant temperature of 85.0°C. The metal pipe is inserted inside of a thin-wall circular tube, which has an inside diameter of 11.2 cm (ignore the resistance of the thin-wall circular tube). The space between the outside of the hot metal pipe and the inside of the thin-wall circular tube is filled with foam insulation, k = 0.036 W/m-K. The outside of the thin-walled circular tube is kept at a constant temperature of 28.0°C. Due to a manufacturing error, the metal pipe was not centered inside the thin-wall tube when the foam insulation was added, but was instead installed with an eccentricity of 2.0 cm (i.e. the center of the metal pipe is 2.0 cm distance from the center of the thin-walled circular tube). Calculate the increase in the heat transfer rate due to…arrow_forwardA water-heater is covered with insulation boards over a total surface area of 3 m2. The inside board surface is at 75°C and the outside being at 20°C and the conductivity of material being 0.08 W/m K. Find the thickness of board to limit the heat transfer loss to 200 W ?arrow_forward
- Approximately how long should it take 9.5 kg of ice at 0 °C to melt when it is placed in a carefully sealed Styrofoam ice chest of dimensions 25 cm × 35 cm x 55 cm whose walls are 1.1 cm thick? Assume that the conductivity of Styrofoam is double that of air and that the outside temperature is 35 °C. Express your answer using two significant figures. VE ΑΣΦ ? Sarrow_forwardA 10-in nominal pipe (outside diameter = 10.75in) is covered with a composite pipe insulation consisting of 2.0 in of insulation I placed next to the pipe and 1.5 in of insulation II placed upon insulation I. Assume that the inner and outer surface temperatures of the composite insulation are 900F and 150F respectively, and that the thermal conductivity of material I is 0.05 BTU/hr-ft-F and for material II is 0.039 BTU/hr-ft-F. What is the individual thermal resistance of insulation I?arrow_forwardThermography is a technique for measuring radiant heat and detecting variations in surface temperatures that may be medically, environmentally, or militarily meaningful.(a) What is the percent increase in the rate of heat transfer by radiation from a given area at a temperature of 34.0C compared with that at 33.0C, such as on a person’s skin? (b) What is the percent increase in the rate of heat transfer by radiation from a given area at a temperature of 34.0C compared with that at 20.0C, such as for warm and cool automobile hoods?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning