
Air (a diatomic ideal gas) at 27.0°C and atmospheric pressure is drawn into a bicycle pump that has a cylinder with an inner diameter of 2.50 cm and length 50.0 cm. The downstroke adiabatically compresses the air, which readies a gauge pressure of 8.00 × 105 Pa before entering the tire. We wish to investigate the temperature increase of the pump. (a) What is the initial volume of the air in the pump? (b) What is the number of moles of air in the pump? (c) What is the absolute pressure of the compressed air? (d) What is the volume of the compressed air? (c) What is the temperature of the compressed air? (f) What is the increase in internal energy of the gas during the compression? What If? The pump is made of steel that is 2.00 mm thick. Assume 4.00 cm of the cylinder’s length is allowed to come to thermal equilibrium with the air. (g) What is the volume of steel in this 4.00-cm length? (h) What is the mass of steel in this 4.00-cm length? (i) Assume the pump is compressed once. After the adiabatic expansion,
(a)

The initial volume of the air in the pump.
Answer to Problem 21P
The initial volume of the air in the pump is
Explanation of Solution
Initial temperature for diatomic gasis
Write the expression to calculate the radius of the pump.
Here,
Write the formula to calculate the initial volume of the air in the pump.
Here,
Substitute
Substitute
Thus, the initial volume of the air in the pump is
Conclusion:
Therefore, the initial volume of the air in the pump is
(b)

The number of moles of air in the pump.
Answer to Problem 21P
The number of moles of air in the pump is
Explanation of Solution
Initial temperature for diatomic gas is
Write the formula to calculate the number of moles of air in the pump.
Here,
The value of atmospheric pressure for diatomic gas is
Substitute
Thus, the number of moles of air in the pump is
Conclusion:
Therefore, the number of moles of air in the pump is
(c)

The absolute pressure of the compressed air.
Answer to Problem 21P
The absolute pressure of the compressed air is
Explanation of Solution
Initial temperature for diatomic gas is
Write the formula to calculate the absolute pressure of the compressed air.
Here,
Substitute
Thus, the absolute pressure of the compressed air is
Conclusion:
Therefore, the absolute pressure of the compressed air is
(d)

The volume of the compressed air.
Answer to Problem 21P
The volume of the compressed air is
Explanation of Solution
Initial temperature for diatomic gas is
Write the expression for the adiabatic compression.
Here,
Write the formula to calculate the volume of the compressed air.
Substitute
Thus, the volume of the compressed air is
Conclusion:
Therefore, the volume of the compressed air is
(e)

The temperature of the compressed air.
Answer to Problem 21P
The temperature of the compressed air is
Explanation of Solution
Initial temperature for diatomic gas is
Write the formula to calculate the temperature of the compressed air.
Here,
Substitute
Thus, the temperature of the compressed air is
Conclusion:
Therefore, the temperature of the compressed air is
(f)

The increase in internal energy of the gas during the compression.
Answer to Problem 21P
The increase in internal energy of the gas during the compression is
Explanation of Solution
Initial temperature for diatomic gas is
For adiabatic process, the work done on the gas is equal to the change in internal energyof the gas during the compression.
Here,
Write the expression for the change in internal energyof the gas during the compression.
Here,
Write the expression for specific heat at constant volume.
Here,
Equate the three expressions (7),(8) and (9)and re-arrange to get
Write the formula to calculate the change in temperature of a monatomic ideal gas.
Here,
Substitute
Thus, the change in temperature of a monatomic ideal gas is
Substitute
Thus, the increase in internal energy of the gas during the compression is
Conclusion:
Therefore, the increase in internal energy of the gas during the compression is
(g)

The volume of the steel in this
Answer to Problem 21P
The volume of the steel in this
Explanation of Solution
Initial temperature for diatomic gas is
Write the formula to calculate the volume of the steel in this
Here,
Write the expression to calculate the square radius of the pump for steel.
Here,
Write the formula to calculate the outer radius of the pump.
Here,
Substitute
Thus, the outer radius of the pump is
Substitute
Thus, the square radius of the pump for steel is
Substitute
Thus, the volume of the steel in this
Conclusion:
Therefore, the volume of the steel in this
(h)

The mass of the steel in this
Answer to Problem 21P
The mass of the steel in this
Explanation of Solution
Initial temperature for diatomic gas is
Write the formula to calculate the mass of the steel in this
Here,
The value of density of the steel is
Substitute
Thus, the mass of the steel in this
Conclusion:
Therefore, the mass of the steel in this
(i)

The increase in temperature of the steel after one compression.
Answer to Problem 21P
The increase in temperature of the steel after one compression is
Explanation of Solution
Initial temperature for diatomic gas is
After the adiabatic compression, conduction in the part (f) being shared between the gas and the
The work done on the gas is equal to the sum of change in internal energyof the gas during the compression and the heat supplied.
Here,
Write the expression for
Here,
The value of specific heat capacity is
Substitute
Substitute
Thus, the increase in temperature of the steel after one compression is
Conclusion:
Therefore, the increase in temperature of the steel after one compression is
Want to see more full solutions like this?
Chapter 20 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Considering the cross-sectional area shown in Fig.2: 1. Determine the coordinate y of the centroid G (0, ỹ). 2. Determine the moment of inertia (I). 3. Determine the moment of inertia (Ir) (with r passing through G and r//x (// parallel). 4 cm 28 cm G3+ G 4 cm y 12 cm 4 cm 24 cm xarrow_forwardI need help understanding 7.arrow_forwardThe stress-strain diagram for a steel alloy is given in fig. 3. Determine the modulus of elasticity (E). σ (ksi) 40 30 20 10 0 0 0.0005 0.001 0.0015 0.002 0.0025 0.0030.0035 Earrow_forward
- A Van de Graff generator, if the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other using Coulomb's Law to calculate the electrical force. Give your answer as the number of Coulombsarrow_forwardPlease help me answer the following question. I am having trouble understanding the directions of the things the question is asking for. Please include a detailed explanation and possibly drawings of the directions of Bsource, Binduced, and Iinduced.arrow_forward43. A mass må undergoes circular motion of radius R on a hori- zontal frictionless table, con- nected by a massless string through a hole in the table to a second mass m² (Fig. 5.33). If m₂ is stationary, find expres- sions for (a) the string tension and (b) the period of the circu- lar motion. m2 R m₁ FIGURE 5.33 Problem 43arrow_forward
- CH 70. A block is projected up an incline at angle 0. It returns to its initial position with half its initial speed. Show that the coefficient of ki- netic friction is μk = tano.arrow_forwardPassage Problems A spiral is an ice-skating position in which the skater glides on one foot with the other foot held above hip level. It's a required element in women's singles figure-skating competition and is related to the arabesque performed in ballet. Figure 5.40 shows Canadian skater Kaetlyn Osmond executing a spiral during her medal-winning perfor- mance at the 2018 Winter Olympics in Gangneung, South Korea. 77. From the photo, you can conclude that the skater is a. executing a turn to her left. b. executing a turn to her right. c. moving in a straight line out of the page. 78. The net force on the skater a. points to her left. b. points to her right. c. is zero. 79. If the skater were to execute the same maneuver but at higher speed, the tilt evident in the photo would be a. less. b. greater. c. unchanged. FIGURE 5.40 Passage Problems 77-80 80. The tilt angle 0 that the skater's body makes with the vertical is given ap- proximately by 0 = tan¯¹(0.5). From this you can conclude…arrow_forwardFrictionless surfarrow_forward
- 71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





