COLLEGE PHYSICS,VOLUME 1
COLLEGE PHYSICS,VOLUME 1
2nd Edition
ISBN: 9781319115104
Author: Freedman
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 20, Problem 20QAP
To determine

(a)

Induced emf at t < 0 s

Expert Solution
Check Mark

Answer to Problem 20QAP

Induced emf at t < 0 s= 0 T

Explanation of Solution

Given info:

  Number of turns =30diameter of the coil =0.6 mmagnetic field = 1.0 T

Formula used:

  A=πr2A=arear=radiusΦ=NBAΦ=magnetic fluxN=number of turnsε=dΦdtε= emft= time

Calculation:

  radius=0.6 m2=0.3 m

  By substituting,ε=dΦdtε=ddt(NBπr2)ε=Nπr2dBdtε=-Nπr2(B2B1)dtMagnetic field is constant when t < 0 sdB = 0,ε=0

Conclusion:

Induced emf at t < 0 s= 0 T

To determine

(b)

Induced emf at t =5.0 s

Expert Solution
Check Mark

Answer to Problem 20QAP

Induced emf at t =5.0 s= 2.54 mV

Explanation of Solution

Given info:

  Number of turns =30diameter of the coil =0.06 mmagnetic field = 1.0 Tmagnetic field is increased to 1.3 T in 10 s

Formula used:

  A=πr2A=arear=radiusΦ=NBAN=number of turnsε=dΦdtε= emft= time

Calculation:

  radius=0.06 m2=0.03 mMagnetic field at 5 s = 1.3 T - 1.0 T10 s*5 s+1.0 T=1.15 T

  By substituting,ε=dΦdtε=ddt(NBπr2)ε=Nπr2dBdtε=-Nπr2(1.15 T1.00 T)dtε=-30*3.14*(0.03 m)2(1.15 T1.00 T)1 sε=2.54 mV

Conclusion:

Induced emf at t =5.0 s= 2.54 mV

To determine

(c)

Induced emf at t < 10 s

Expert Solution
Check Mark

Answer to Problem 20QAP

Induced emf at t < 10 s= 0 T

Explanation of Solution

Given info:

  Number of turns =30diameter of the coil =0.6 mmagnetic field = 1.0 T

Formula used:

  A=πr2A=arear=radiusΦ=NBAN=number of turnsε=dΦdtε= emft= time

Calculation:

  radius=0.6 m2=0.3 m

  By substituting,ε=dΦdtε=ddt(NBπr2)ε=Nπr2dBdtε=-Nπr2(B2B1)dtMagnetic field is constant after 10 sdB = 0,ε=0

Conclusion:

Induced emf at t < 10 s= 0 T

To determine

(d)

Plot the magnetic field and induced emf as functions of time

Expert Solution
Check Mark

Answer to Problem 20QAP

  COLLEGE PHYSICS,VOLUME 1, Chapter 20, Problem 20QAP , additional homework tip  1

  COLLEGE PHYSICS,VOLUME 1, Chapter 20, Problem 20QAP , additional homework tip  2

Explanation of Solution

Given info:

    Time (s)Magnetic field (T)induced emf (V)
    -1010
    -510
    010
    11.030.0025434
    21.060.0025434
    31.090.0025434
    41.120.0025434
    51.150.0025434
    61.180.0025434
    71.210.0025434
    81.240.0025434
    91.270.0025434
    101.30.0025434
    151.30
    201.30

Formula used:

  A=πr2A=arear=radiusΦ=NBAN=number of turnsε=dΦdtε= emft= time

Calculation:

emf at 1 s as shown below, all the emf values were calculated like that by substituting the magnetic field at particular time.

  B at 1 s =1.03 TBy substituting,ε=dΦdtε=ddt(NBπr2)ε=Nπr2dBdtε=-30*3.14*(0.03 m)2(1.03 T1.00 T)1 sε=2.54 mV

Conclusion:

Graphs were drawn in the answer section.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary.    bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago   Show feedback   bookmark_border1.0p3b Is the image real or virtual?       Real       Virtual Updated 6 days ago   Show feedback   bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated 7 minutes ago   Show feedback   bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answer
n object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary.    bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago   Show feedback   bookmark_border1.0p3b Is the image real or virtual?       Real       Virtual Updated 6 days ago   Show feedback   bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated just now   Show feedback   bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answer
Can you draw a FBD and KD please!
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY