
(a)
Interpretation:
The molar entropy
Concept Introduction:
Entropy is a
Entropy is the measure of randomness in the system. Standard entropy change in a reaction is the difference in entropy of the products and reactants.
Where,
Standard entropy change in a reaction and entropy change in the system are same.
(a)

Explanation of Solution
The formation reaction for propylene is,
Equal molar of carbon
Entropy change
Calculate the change in entropy for this reaction as follows,
Where,
Calculate the molar entropy for given reaction,
The
The molar entropy change is negative sign for
(b)
Interpretation:
For the propylene formation reaction
Concept introduction:
Free energy is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Free energy change
Where,
(b)

Explanation of Solution
The formation reaction for propylene is,
Standared Free energy change equation is,
Free energy change
Calcualted enthalpy and entropy values are
These values are plugging above standard free energy equation,
Hence the free energy
(c)
Interpretation:
For the dehydrogenation reaction the enthalpy
Concept Introduction:
Enthalpy is the amount energy absorbed or released in a process.
The enthalpy change in a system
Where,
Free energy is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
(c)

Explanation of Solution
The dehydrogantion reaction is as follows,
Standard enthalpy change is,
Let us find enthalpy change for the reaction,
Hence, the enthalpy
Standared Free energy change equation iss,
Free energy change
Calculated enthalpy and entropy values are
These values are plugging above standard free energy equation,
The free energy
(d)
Interpretation:
For the formation of propylene theoretical yield has to be calculated at
Concept introduction:
Entropy is the measure of randomness in the system. Standard entropy change in a reaction is the difference in entropy of the products and reactants.
Where,
Free energy is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
(d)

Explanation of Solution
The formation reaction for propylene is,
Entropy change
Calculate the change in entropy for this reaction as follows,
Standared Free energy change equation is,
Free energy change
Calcualted enthalpy and entropy values are
These values are plugging above standard free energy equation,
Calculation for equilibrium pressure
The equilibrium equation is,
Rearrange the above equation,
The equilibrium reaction is,
Here,
So,
Solve the above quadratic equation,
Hence, the theoretical yield of propylene is
(e)
Interpretation:
Identify whether there is any yield change if the reactor wall were preamble to hydrogen
Concept introduction:
Theoretical yield: The amount of product formed, assuming complete reaction of the limiting reagent.
Actual yield: The amount of product actually formed in a reaction.
Percent yield: The percentage of the theoretical yield actually obtained from a
(e)

Explanation of Solution
The formation reaction for propylene,
If hydrogen could escape through the reactor walls, the reaction would be shifted to the right side and improving the yield.
(f)
Interpretation:
The temp at which the dehydrogenation spontaneous has to be identified, provided all substances in the standard state.
Concept introduction:
Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. The entropy changes associated with a phase transition reaction can be found by the following equation.
Where,
(f)

Explanation of Solution
The formation reaction for propylene,
Standared Free energy change equation is,
Rearrange the equation (2) to calculate temprature T,
Hence,
Enthalpy and entropy values are
Hence, the propylene formation founded temperature value is
Want to see more full solutions like this?
Chapter 20 Solutions
Student Study Guide for Silberberg Chemistry: The Molecular Nature of Matter and Change
- 81. a. Propose a mechanism for the following reaction: OH CH2=CHCHC=N b. What is the product of the following reaction? HO H₂O N=CCH2CH2CH OH HO CH3CCH=CH2 H₂O C=N 82. Unlike a phosphonium ylide that reacts with an aldehyde or a ketone to form an alkene a sulfonium uliaarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. ? NH2 MgBr Will the first product that forms in this reaction create a new CC bond? ○ Yes ○ No MgBr ? Will the first product that forms in this reaction create a new CC bond? O Yes O No Click and drag to start drawing a structure. :☐ G x c olo Ar HEarrow_forwardPredicting As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C - C bond as its major product: H₂N O H 1. ? 2. H3O+ If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. 0 If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. فا Explanation Check Click and drag to start drawing a structure.arrow_forward
- Highlight the chirality (or stereogenic) center(s) in the given compound. A compound may have one or more stereogenic centers. OH OH OH OH OH OHarrow_forwardUsing wedge-and-dash bonds, modify the bonds on the chiral carbon in the molecule below so the molecule has R stereochemical configuration. NH H Br X टेarrow_forwardProvide photos of models of the following molecules. (Include a key for identification of the atoms) 1,2-dichloropropane 2,3,3-trimethylhexane 2-bromo-3-methybutanearrow_forward
- Please draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFirefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.arrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardGiven a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





