Interpretation:
For the given set of reactions in problem 20.52 the standard free energy
Concept introduction:
Enthalpy is the amount energy absorbed or released in a process.
The enthalpy change in a system
Where,
Entropy is the measure of randomness in the system. Standard entropy change in a reaction is the difference in entropy of the products and reactants.
Where,
Standard entropy change in a reaction and entropy change in the system are same.
Free energy is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Where,
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Where,
Answer to Problem 20.54P
Reaction-A the standard free energy value is
Reaction-B the standard free energy value is
Reaction-C the standard free energy value is
Explanation of Solution
Reaction-A
Given
The number of particle also decreases, indicating a decrease in entropy.
So, given reaction
Standard enthalpy change is,
The enthalpy change for the reaction is calculated as follows,
The enthalpy change is negative.
Hence, the enthalpy
Entropy change
Standard entropy change equation is,
Where,
Therefore, the
Next calculate the Free enrgy change
Standared Free energy change equation iss,
Free energy change
Calcualted enthalpy and entropy values are
These values are plugging above standard free energy equation,
Therefore, the standard free energy value is
Reaction-B
Given reaction is,
The number of particle also increases, indicating a increase in entropy.
Standard enthalpy change is,
The enthalpy change for the reaction is calculated as follows,
The enthalpy change is negative.
Hence, the enthalpy
Entropy change
Standard entropy change equation is,
Where,
Therefore, the
Next calculate the Free energy change
Standared Free energy change equation iss,
Free enrgy change
Calcualted enthalpy and entropy values are
These values are plugging above standard free energy equation,
Therefore, the standard free energy value is
Reaction-C
Given reaction is,
Standard enthalpy change is,
The enthalpy change for the reaction is calculated as follows,
The enthalpy change is positive.
Hence, the enthalpy
Entropy change
Standard entropy change equation is,
Where,
Therefore, the
Finally calculate the Free enrgy change
Standared Free energy change equation iss,
Free energy change
Calcualted enthalpy and entropy values are
These values are plugging above standard free energy equation,
Therefore, the standard free energy value is
Want to see more full solutions like this?
Chapter 20 Solutions
Chemistry: The Molecular Nature of Matter and Change (Looseleaf)
- Nonearrow_forward4. Draw and label all possible isomers for [M(py)3(DMSO)2(CI)] (py = pyridine, DMSO dimethylsulfoxide).arrow_forwardThe emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forward
- 7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY