
(a)
Interpretation:
Tellurium-132 decays by emission of beta particle to produce highly unstable intermediate which is decays promptly to give stable product nuclei. The half-life of Tellurium-132 is 3.26d.
The balanced equation for decay of Tellurium-132 has to be written and the product has to be identified.
(a)

Answer to Problem 20.102QP
The balanced equation for decay of Tellurium-132 is,
Explanation of Solution
When Tellurium-132 undergoes beta (
(b)
Interpretation:
Tellurium-132 decays by emission of beta particle to produce highly unstable intermediate which is decays promptly to give stable product nuclei. The half-life of Tellurium-132 is 3.26d.
The balanced equation for production of stable product has to be written.
(b)

Answer to Problem 20.102QP
The balanced equation for stable product formed in the given nuclear reaction is,
Explanation of Solution
Already given that
(c)
Interpretation:
Tellurium-132 decays by emission of beta particle to produce highly unstable intermediate which is decays promptly to give stable product nuclei. The half-life of Tellurium-132 is 3.26d.
The quantity of
(c)

Answer to Problem 20.102QP
The quantity of
At
Explanation of Solution
Use the rate law to identify the fraction after 93hh. The half-life is 3.26d.
Taking antilog on both sides gives,
So, the number of moles remains after 93.0h is
The reaction can be summarized as follows,
To determine the pressure in the flask, we required the total moles of gas. This is,
Therefore, the pressure in the flask is,
Want to see more full solutions like this?
Chapter 20 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry
- Briefly state the electrocapillary equation for ideally polarized electrodes.arrow_forwardWhat is surface excess according to the Gibbs model?arrow_forwardUsing Benzene as starting materid show how each of the Following molecules Contel Ve syntheswed CHI 9. b -50311 с CHY 503H Ночто d. อ •NOV e 11-0-650 NO2arrow_forward
- The molecule PYRIDINE, 6th electrons and is therefore aromatre and is Assigned the Following structure contering Since aromatk moleculoy undergo electrophilic anomatic substitution, Pyridine shodd undergo The Following reaction + HNO3 12504 a. write all of the possible Mononitration Products that could Result From this reaction 18. Bared upon the reaction mechanison determime which of these producty would be the major Product of the hegetionarrow_forwarda. Explain Why electron withdrawing groups tend to be meta-Directors. Your answer Should lyclude all apropriate. Resonance contributing Structures fo. Explain why -ll is an outho -tura drccton even though chlorine has a very High Electronegativityarrow_forward9. Write Me product as well as the reaction Mechanism For each of the Following Vanctions +H₂504 4.50+ T C. +212 Fellz 237 b. Praw the potential energy Diagrams For each OF Mese Rauctions and account For any differences that appear in the two potential Puergy Diagrams which of here two reactions 19 Found to be Reversable, Rationalice your answer based upon the venation mechanisms and the potential energy diagrams.arrow_forward
- 9. Write Me product as well as the reaction Mechanism For each of the Following Veritious +H2504 4.50+ + 1/₂ Felly ◎+ 7 b. Praw he potential energy Diagrams For each OF Mese Ronctions and account for any differences that appeak in the two potential Puergy Diagramsarrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. Incorrect, 3 attempts remaining 1. excess Br2, NaOH 2. neutralizing workup Qarrow_forwardGiven the electrode Pt | Ag | Ag+ (aq), describe it.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




