21ST CENT.AST.W/WKBK+SMARTWORK >BI<
21ST CENT.AST.W/WKBK+SMARTWORK >BI<
6th Edition
ISBN: 9780393415216
Author: Kay
Publisher: NORTON
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 1QP
To determine

The size of the Milky Way is determined from studying stars in globular clusters.

Expert Solution & Answer
Check Mark

Answer to Problem 1QP

Option (c) RR Lyrae is the correct option.

Explanation of Solution

A globular cluster is a spherical collection of stars that orbits a galactic core. Globular clusters are very tightly bound by gravity, which gives them their spherical shapes, and relatively high stellar densities toward their centers.

RR Lyrae stars are easy to spot in globular clusters because they are relatively luminous and have a distinctive light curve. They lie in the instability strip of the Hertzsprung-Russell (H-R) diagram and suffer instabilities that cause their size to periodically change. This change in size also changes the temperature of the star giving rise to their variability.

The size of the Milky Way is determined from studying RR Lyrae stars in globular clusters.

Conclusion:

Since the period-luminosity relationship to determine the distances to globular clusters, option (c) is correct.

RR Lyrae is easy to spot in the globular cluster than the Cepheid variable. Thus, option (a) is incorrect.

Blue supergiant are found towards the top left of H-R diagram. Thus, option (b) is incorrect.

The density of stars inside a globular cluster is significantly higher than the density of stars around the Sun. Thus, option (d) is incorrect.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.
8 Two moving charged particles exert forces on each other because each creates a magnetic field that acts on the other. These two "Lorentz" forces are proportional to vix (2 xr) and 2 x (vi x-r), where is the vector between the particle positions. Show that these two forces are equal and opposite in accordance with Newton's third law if and only if rx (vi × 2) = 0.
6 The force = +3 + 2k acts at the point (1, 1, 1). Find the torque of the force about (a) (b) the point (2, -1, 5). Careful about the direction of ŕ between the two points. the line = 21-+5k+ (i-+2k)t. Note that the line goes through the point (2, -1, 5).
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax