The three boxes that provide an example for the interaction or change associated with each of the components of Earth’s climate system and the way in which these interactions influence temperature with reference to Figure 20.1 in the text book.
Answer to Problem 1GST
All the boxes given in the picture are associated with more than one component of Earth’s climate systems. All the given interactions influence the temperature in different ways.
Explanation of Solution
The climatic system includes the atmosphere, hydrosphere, geosphere, cryosphere, and biosphere. The exchange of energy between these spheres results in the climatic system. Figure 20.1 describes the schematic view showing several components of the Earth’s climate system.
Each box in the given picture is associated with almost all the spheres of the Earth directly or indirectly. For instance, if we consider the box showing “changes in the amount and type of cloud cover” it is associated with the atmosphere along with the geosphere and hydrosphere because the clouds are formed basically from the water evaporated from the earth’s surface.
The boxes with “biosphere-atmosphere interactions” and ocean-atmosphere interactions” shows the clear association of biosphere and hydrosphere with the atmosphere.
Want to see more full solutions like this?
Chapter 20 Solutions
Earth Science (nasta Edition) 15th Edition
- Hexagonal system. Indicate the volume of the unit cell.arrow_forwardFORM OF VOLCANOarrow_forwardf the same amount of sunlight was hitting an area of land and an area of water, which area would heat more rapidly? The land would heat more rapidly. The water would heat more rapidly. They would both heat at about the same rate It would depend on the characteristics of the water and land.arrow_forward
- The Atlantic and Gulf Coastal Plain physiographic province has which of the following characteristics? Many fertile swamps and marshes Low, rolling hills Folding, uplift, and faulting Small mountain ranges and flat valleysarrow_forwardSuppose you are visiting the equator. It is noon. The Sun is at its highest point in the sky for the day, which is directly over your head. You call a friend on the phone, and she says it is also noon where she is but the Sun is not directly overhead at that location and time. It is a little lower in the sky for her. Compare the longitude and latitude of your location with the longitude and latitude of your friend's location. Are they alike or different? How do you know?arrow_forwardProvide examples to illustrate the effects of glacier and ice sheet melting on climate globally and regionally. Use words to illustrate any feedback mechanisms between melting ice sheets and the climate.arrow_forward
- Use diagrams and word explanations to show how excess heat from the tropics is transferred to higher latitudes (discuss cells and ciruclations) . Additionally, show how the broadening of the Hadley Cell, caused by rising greenhouse gases, could affect surface climate in subtropical and mid-latitude regions.arrow_forwardExplain why the Earth is in not in radiative equilibriumarrow_forwardShowing the energy flows into and out of Earth’s atmosphere with energy sketches. Clearly label each flow for what it represents, distinguishing between solar and terrestrial energy flows. Explain the diagrams in more detailsarrow_forward
- 44) In periglacial environments, the layer of ground that thaws every summer and freezes every winter is called A) frost layer B) permafrost C) active layer D) discontinuous permafrostarrow_forwardUse the attached piezometer map to make your own, clean version of the map, and indicate the elevation of the water table at all piezometer locations. Draw equipotential lines (lines of equal water table elevation) using regular intervals – creating a contoured map of the water table. Determine the direction of groundwater flow based on the horizontal gradient. Label the areas of recharge and discharge directly on your map. Flow lines: Draw flow lines on your water table map. The lines should be at right angles to the equipotential lines and extend from the recharge area to the discharge area. Hydraulic Gradient, Specific Discharge (Darcy Flux), Average Linear Velocity: Using your water table map, estimate an average hydraulic gradient between two locations, call them locations A and B, one at the eastern-most and a second at the western-most extent of your dataset (note the north arrow on the map). Calculate the specific discharge, q, between the two locations. For this calculation…arrow_forwardCalculate all the values of table 1: Q in (L/day) Q out (L/day) Residence time (days) Please show all stepsarrow_forward
- Applications and Investigations in Earth Science ...Earth ScienceISBN:9780134746241Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONExercises for Weather & Climate (9th Edition)Earth ScienceISBN:9780134041360Author:Greg CarbonePublisher:PEARSONEnvironmental ScienceEarth ScienceISBN:9781260153125Author:William P Cunningham Prof., Mary Ann Cunningham ProfessorPublisher:McGraw-Hill Education
- Earth Science (15th Edition)Earth ScienceISBN:9780134543536Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONEnvironmental Science (MindTap Course List)Earth ScienceISBN:9781337569613Author:G. Tyler Miller, Scott SpoolmanPublisher:Cengage LearningPhysical GeologyEarth ScienceISBN:9781259916823Author:Plummer, Charles C., CARLSON, Diane H., Hammersley, LisaPublisher:Mcgraw-hill Education,