UNIVERSE (LOOSELEAF):STARS+GALAXIES
6th Edition
ISBN: 9781319115043
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 19Q
To determine
Whether the small, glowing disk of light observed through a telescope is a planetary nebula or something else.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which of the following statements is/are true regarding a nebula?
Which of the following statements is/are true regarding a nebula?
It is believed that each planet in our solar system began as its own nebula.
Over time, a nebula becomes cooler and grows in size.
The density of a nebula is greatest at the edges and least in the center.
There are no nebulas left in our galaxy because they have all formed stars and planets.
Over time, a star will form at the center of a nebula.
. The radius of the nebula is about 0.401 light-years. The gas is expanding away from the star at a rate of about 37
kilometers/second
. Considering that distance = velocity x time, calculate how long ago the gas left the star if its speed has been constant the whole time. Make sure you use consistent units for time, speed, and distance. Answer in years.
why do dark streaks appear in visible light images of the Trifid nebula, but appear bright in an infared image
Chapter 20 Solutions
UNIVERSE (LOOSELEAF):STARS+GALAXIES
Ch. 20 - Prob. 1QCh. 20 - Prob. 2QCh. 20 - Prob. 3QCh. 20 - Prob. 4QCh. 20 - Prob. 5QCh. 20 - Prob. 6QCh. 20 - Prob. 7QCh. 20 - Prob. 8QCh. 20 - Prob. 9QCh. 20 - Prob. 10Q
Ch. 20 - Prob. 11QCh. 20 - Prob. 12QCh. 20 - Prob. 13QCh. 20 - Prob. 14QCh. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - Prob. 18QCh. 20 - Prob. 19QCh. 20 - Prob. 20QCh. 20 - Prob. 21QCh. 20 - Prob. 22QCh. 20 - Prob. 23QCh. 20 - Prob. 24QCh. 20 - Prob. 25QCh. 20 - Prob. 26QCh. 20 - Prob. 27QCh. 20 - Prob. 28QCh. 20 - Prob. 29QCh. 20 - Prob. 30QCh. 20 - Prob. 31QCh. 20 - Prob. 32QCh. 20 - Prob. 33QCh. 20 - Prob. 34QCh. 20 - Prob. 35QCh. 20 - Prob. 36QCh. 20 - Prob. 37QCh. 20 - Prob. 38QCh. 20 - Prob. 39QCh. 20 - Prob. 40QCh. 20 - Prob. 41QCh. 20 - Prob. 42QCh. 20 - Prob. 43QCh. 20 - Prob. 44QCh. 20 - Prob. 45QCh. 20 - Prob. 46QCh. 20 - Prob. 47QCh. 20 - Prob. 48QCh. 20 - Prob. 49QCh. 20 - Prob. 50QCh. 20 - Prob. 51QCh. 20 - Prob. 52QCh. 20 - Prob. 53QCh. 20 - Prob. 54QCh. 20 - Prob. 55QCh. 20 - Prob. 56QCh. 20 - Prob. 57QCh. 20 - Prob. 58QCh. 20 - Prob. 59QCh. 20 - Prob. 60QCh. 20 - Prob. 61QCh. 20 - Prob. 62QCh. 20 - Prob. 63QCh. 20 - Prob. 64QCh. 20 - Prob. 65QCh. 20 - Prob. 66QCh. 20 - Prob. 67QCh. 20 - Prob. 68QCh. 20 - Prob. 69QCh. 20 - Prob. 70QCh. 20 - Prob. 71QCh. 20 - Prob. 72QCh. 20 - Prob. 73QCh. 20 - Prob. 74QCh. 20 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is a planetary nebula? Will we have one around the Sun?arrow_forwardConsider the following five kinds of objects: open cluster, giant molecular cloud, globular cluster, group of O and B stars, and planetary nebulae. A. Which occur only in spiral arms? B. Which occur only in the parts of the Galaxy other than the spiral arms? C. Which are thought to be very young? D. Which are thought to be very old? E. Which have the hottest stars?arrow_forwardSuppose two protostars form at the same time, one with a mass of 0.5MSunSun [Select ALL answers that are true in alphabetical order]A) The 10MSun protostar will have a smaller change in surface temperature during this phase than the 0.5MSun protostar.B) The 10MSun protostar will reach the main sequence cooler and fainter than the 0.5MSun protostar.C) The 10MSun star will end its main-sequence life before the 0.5MSun star even completes its protostar stage.D) The 10MSun protostar will have a smaller change in luminosity during the sequence shown than the 0.5MSun protostar.E) The 10MSun protostar will be much more luminous than the 0.5MSun protostar.arrow_forward
- H5. A star with mass 1.05 M has a luminosity of 4.49 × 1026 W and effective temperature of 5700 K. It dims to 4.42 × 1026 W every 1.39 Earth days due to a transiting exoplanet. The duration of the transit reveals that the exoplanet orbits at a distance of 0.0617 AU. Based on this information, calculate the radius of the planet (expressed in Jupiter radii) and the minimum inclination of its orbit to our line of sight. Follow up observations of the star in part reveal that a spectral feature with a rest wavelength of 656 nm is redshifted by 1.41×10−3 nm with the same period as the observed transit. Assuming a circular orbit what can be inferred about the planet’s mass (expressed in Jupiter masses)?arrow_forwardAll massive main sequence stars reside in clouds of glowing gas. The four powerful stars in the center of the Orion Nebula are good examples. Lower mass stars like the Sun generally don't have clouds of gas around them. a. Why do powerful stars reside in gas clouds? b. What is making the gas glow exactly? For the last question, refer to the surface temperature of these stars, and to Wien's Law.arrow_forwardWhich statement is most logical? a Once gravity overcomes thermal pressure, nebulae cloud turns into molecular cloud. If it is cold and dense enough, molecular cloud might turn into protostar. b If gravity is stronger than thermal pressure, nebulae cloud contracts into molecular cloud. If it is cold and dense enough, molecular cloud might turn into protostar. c If a molecular cloud is cold and dense enough, it turns into a protostar. Once gravity overcomes thermal pressure, protostar might become molecular cloud. d If a nebulae cloud is cold and dense enough, it turns into molecular cloud. If gravity is stronger than thermal pressure, molecular cloud might become protostar.arrow_forward
- Place the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O Oarrow_forwardA planetary nebula expanded in radius 0.3 arc seconds in 30 years. Doppler measurements show the nebula is expanding at a rate of 35 km/s. How far away is the nebula in parsecs? First, determine what distance the nebular expanded in parsecs during the time mentioned. Δd = vpc/sTs So we first need to convert the rate into pc/s and the time into seconds: vpc/s = vkm/s (1 pc / 3.09 x 1013km) vpc/s = ? Ts = (Tyr)(365 days/yr)(24 hrs/day)(3600 s/hr) Ts = ? s Δd= vpc/sTs Therefore, Δd = ? pcarrow_forwardLet’s say you’re looking for extrasolar planets. You observe a star that has a spectral shift in the line that is supposed to be at at 656.28011 nm – this star shows this line at 656.28005 nm. What is the radial velocity of star (in m/s) and in what direction in relation to you? a) 27.4 m/s, towards b) 27.4 km/s, away c) -27.4 m/s, toward d) -27.4 km/s, awayarrow_forward
- 1arrow_forwardHow does one go about these questions?arrow_forward1. A planetary nebula has an angular diameter of 76 arc seconds and a distance of 5100 ly. What is its linear diameter (in ly)? Hint: Use the small-angle formula: angular diameter (in arc seconds) 2.06 ✕ 105 = linear diameter distance 2. Suppose a planetary nebula is 3.2 pc in diameter, and Doppler shifts in its spectrum show that the planetary nebula is expanding at 31 km/s. How old is the planetary nebula in yr? (Note: 1 pc = 3.1 ✕ 1013 km and 1 yr = 3.2 ✕ 107 s.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning