Concept explainers
(a)
The location of the particle and the charges on them.
(a)
Answer to Problem 18P
The location on first particle is
The location on second particle is
Explanation of Solution
Write the expression of standard equation for the potential difference.
Here,
Write the expression of standard equation for the electric filed.
Here,
Write the expression for the given potential difference.
Here,
Write the expression for the given electric field.
Here,
Conclusion:
Comparing equation (II) and (IV), the first particle is having charge with magnitude
The location of the first particle is
Thus, The location on first particle is
Comparing equation (II) and (IV), the second particle is having charge with magnitude
The location of the second particle is
Thus, the location on second particle is
(b)
The force acting on charge -16.0 nC.
(b)
Answer to Problem 18P
The force acting on charge -16.0 nC is
Explanation of Solution
Rewrite the expression for the given electric field from equation (IV).
Write the expression for the force action on the charge.
Here,
Conclusion:
Substitute
Thus, the force acting on charge -16.0 nC is
(c)
The work done required to move the charge.
(c)
Answer to Problem 18P
The work done required to move the charge is
Explanation of Solution
Rewrite the expression for the given potential difference by using equation (III).
Write the expression for the required work done.
Here,
Conclusion:
Substitute
Thus, the work done required to move the charge is
Want to see more full solutions like this?
Chapter 20 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- I need correct answer not chatgptarrow_forwardWhat is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter? 0.445 ΧΩarrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forward
- Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forwardShow that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College