To calculate: The equilibrium constant for the reaction given in question at 25°C.
Introduction:
Chloroplast is a double membrane bound organelle present in green plants and algae. Chloroplast contains thylakoid membrane in which two photosystem units PS I and PS II are present. These photosystem units absorb sunlight and pass it to an antenna molecule to drive the photosynthesis process.

Explanation of Solution
To calculate the equilibrium constant for the reaction, first the standard reduction potential is calculated for two half reactions of the given reaction:
The two half reactions of the given equations are given below as:
Now, the change in standard reduction potential can be calculated by using the formula,
In the given formula,
Thus, the value of
Now, standard free energy change can be calculated as:
Thus, standard free energy change is 440 kJ/mol.
Now, the equilibrium constant for the above given reaction is calculated under steady state. Thus, the equilibrium constant of the given reaction can be calculated by the formula given below:
In the given equation,
Now, from above equation, ΔG can be calculated as:
The natural logarithm can be calculated as:
The equilibrium constant for the given reaction is 1.35×10-77.
The equilibrium constant for the reaction at 25°C is
To determine: The way in which chloroplast overcome the unfavorable equilibrium.
Introduction:
Chloroplast is a double membrane bound organelle present in green plants and algae. Chloroplast contains thylakoid membrane in which two photosystem units PS I and PS II are present. These photosystem units absorb sunlight and pass it to an antenna molecule to drive the photosynthesis process.

Explanation of Solution
The calculated equilibrium constant value is 1.35×10-77. A large equilibrium constant value is very unfavorable to drive a reaction. To overcome the equilibrium constant barrier, chloroplast would use both photosystem units (PS I, and PS II). The striking of light in both photosystem units would reduce the equilibrium constant, and help the chloroplast to overcome the equilibrium barrier. Thus, in chloroplast light energy input overcomes this barrier.
Want to see more full solutions like this?
Chapter 20 Solutions
SAPLINGPLUS FOR PRINCIPLES OF BIOCHEMIS
- You’ve isolated a protein and determined that the Native molecular weight of the holoenzyme is 160 kD using size exclusion chromatography. Analysis of this protein using SDS-PAGE revealed 2 bands, one at 100 kD and one at 30 kD. The enzyme was found to be 0.829% NAD (by weight). What further can be said regarding the structure of the polypeptide?arrow_forwardWhat is the formation of glycosylated hemoglobin (the basis for the HbA1c test)? Can you describe it?arrow_forwardPlease analze the gel electrophoresis column of the VRK1 kinase (MW: 39.71 kDa). Also use a ruler to measure the length of the column in centimeters and calculate the MW of each band observed. Lane 1: buffer Lane 2 : Ladder Lane 3: Lysate Lane 4: Flowthrough Lane 5: Wash Lanes 6-8: E1, E2, E3 Lane 9: Dialyzed VRK1 Lane 10: LDHarrow_forward
- Do sensory neurons express ACE2 or only neurolipin-1 receptors for COVID19 virus particle binding?arrow_forwardExplain the process of CNS infiltration of COVID19 through sensory neurons from beginning to end, including processes like endocytosis, the different receptors/proteins that are involved, how they are transported and released, etc.,arrow_forwardH2C CH2 HC-COOO CH2 ܘHO-C-13c-O isocitrate C-S-COA H213c CH2 C-OO 13C-S-COA CH2 C-00 the label will not be present in succinyl CoA C-S-COA succinyl-CoAarrow_forward
- A culture of kidneys cells contains all intermediates of the citric acid cycle. It is treated with an irreversible inhibitor of malate dehydrogenase, and then infused withglucose. Fill in the following list to account for the number of energy molecules that are formed from that one molecule of glucose in this situation. (NTP = nucleotidetriphosphate, e.g., ATP or GTP)Net number of NTP:Net number of NADH:Net number of FADH2:arrow_forward16. Which one of the compounds below is the final product of the reaction sequence shown here? OH A B NaOH Zn/Hg aldol condensation heat aq. HCI acetone C 0 D Earrow_forward2. Which one of the following alkenes undergoes the least exothermic hydrogenation upon treatment with H₂/Pd? A B C D Earrow_forward
- 6. What is the IUPAC name of the following compound? A) (Z)-3,5,6-trimethyl-3,5-heptadiene B) (E)-2,3,5-trimethyl-1,4-heptadiene C) (E)-5-ethyl-2,3-dimethyl-1,5-hexadiene D) (Z)-5-ethyl-2,3-dimethyl-1,5-hexadiene E) (Z)-2,3,5-trimethyl-1,4-heptadienearrow_forwardConsider the reaction shown. CH2OH Ex. CH2 -OH CH2- Dihydroxyacetone phosphate glyceraldehyde 3-phosphate The standard free-energy change (AG) for this reaction is 7.53 kJ mol-¹. Calculate the free-energy change (AG) for this reaction at 298 K when [dihydroxyacetone phosphate] = 0.100 M and [glyceraldehyde 3-phosphate] = 0.00300 M. AG= kJ mol-1arrow_forwardIf the pH of gastric juice is 1.6, what is the amount of energy (AG) required for the transport of hydrogen ions from a cell (internal pH of 7.4) into the stomach lumen? Assume that the membrane potential across this membrane is -70.0 mV and the temperature is 37 °C. AG= kJ mol-1arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





