Interpretation:
The thickness and diameter of the steel is 2 in. and 80 in. respectively. It is plated with a 0.0009 in. layer of zinc. The area of plating and weight of zinc required in lb and grams, number of moles of zinc needed, different methods of deposition of zinc on steel substrate and the method selected in this case needs to be determined.
Concept introduction:
The area of the plating can be calculated as follows:
Here, d is diameter and h is thickness of steel.
The weight/mass of the zinc required can be calculated from density and volume as follows:
Here, d is density and V is volume.
The number of moles of zinc needed can be calculated from mass and molar mass as follows:
Here, m is mass and M is molar mass.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Essentials Of Materials Science And Engineering, Si Edition
- Can you solve for v? Also, what is A x uarrow_forwardCONTROL SYSTEMS The system shown below has been tested with three different reference inputs 6u(t), 6tu(t), and 6tu(t). By using steady-state error calculation, identify which could give zero (0) steady state error. The function u(t) is the unit step. R(s) + E(s) 100(s+2)(s+6) s(s+3)(s+4) C(s)arrow_forwardThe external loads on the element shown below at the free end are F = 1.75 kN, P = 9.0 kN, and T = 72 Nm. The tube's outer diameter is 50 mm and the inner diameter is 45 mm. Given: A(the cross-sectional area) is 3.73 cm², Moment inertial I is 10.55 cm4, and J polar moment inertial is 21.1 cm4. Determine the following. (1) The critical element(s) of the bar. (2) Show the state of stress on a stress element for each critical element. -120 mm- Farrow_forward
- EXAMPLE 3.8 Classify the following signals as energy signals or power signals or neither: a) f₁ (t) = e−t for t≥0 and f₁(t)=0 for t<0, b) f₂(t) = cos(t), and c) f³(t) = e¯†.arrow_forwardI would like to know about the features of Advanced Threat Protection (ATP), AMD-V, and domain name space (DNS).arrow_forwardA crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom ↑ Z C BY NC SA b x B у D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in с 4.5 in The tension in rope AB is lb The tension in rope AC is lb The tension in rope AD is lbarrow_forward
- The airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. a.) If = 11.3°, determine the thrust and lift forces required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle - and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. Уллу Fdrag 10. Ө Fthrust cc 10 2013 Michael Swanbom BY NC SA Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to lbs. The lift force is equal to Part (b) The trajectory angle is equal to deg. The lift force is equal to lbs. lbs.arrow_forwardThe hoist consists of a single rope and an arrangement of frictionless pulleys as shown. If the angle 0 = 59°, determine the force that must be applied to the rope, Frope, to lift a load of 4.4 kN. The three-pulley and hook assembly at the center of the system has a mass of 22.5 kg with a center of mass that lies on the line of action of the force applied to the hook. e ΘΕ B CC 10 BY NC SA 2013 Michael Swanbom Fhook Note the figure may not be to scale. Frope = KN HO Fropearrow_forwardDetermine the tension developed in cables AB and AC and the force developed along strut AD for equilibrium of the 400-lb crate. x. 5.5 ft C 2 ft Z 2 ft D 6 ft B 4 ft A 2.5 ftarrow_forward
- EXAMPLE 3.9 Classify the following systems as linear or nonlinear systems: a) y(t)=t2x(t) and b) y(t) = tx² (t). Solutionarrow_forwardEXAMPLE 3.5 Suppose the signal c₁(t) is defined as follows: {−t+1, |||≤1 C₁(t): 0. |t|>1 Determine c₂(t)=c₁ (2t), c3(t)=c₁ (t/2), and c₁(t) = c₁(-2t).arrow_forward2. Find the equivalent concentrated load(s) for the bags of cement stacked on the dock as shown here. Each bag weighs 100 lbs and is 12 inches long. Draw the loading conditions for each showing the equivalent concentrated load(s). 1 bag = 100lbs L= 12 ft L= 6 ft L= 8ftarrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY