
Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 8FTD
Starting from rest, an object undergoes acceleration given by a = bt, where t is time and b is a constant. Can you use bt for a in Equation 2.10 to predict the object’s position as a function of time? Why or why not?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first.
(a) What (in V) is the peak emf?
7.17
V
(b) At what time (in s) is the peak emf first reached?
0.196
S
(c) At what time (in s) is the emf first at its most negative?
0.589
x s
(d) What is the period (in s) of the AC voltage output?
0.785
S
A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?
For what type of force is it not possible to define a potential energy expression?
Chapter 2 Solutions
Essential University Physics (3rd Edition)
Ch. 2.1 - We just described three trips from Houston to Des...Ch. 2.2 - The figures show position-versus-time graphs for...Ch. 2.3 - An elevator is going up at constant speed, slows...Ch. 2.5 - Standing on a roof, you simultaneously throw one...Ch. 2.6 - The graph shows acceleration versus time for three...Ch. 2 - Under what conditions are average and...Ch. 2 - Does a speedometer measure speed or velocity?Ch. 2 - You check your odometer at the beginning of a days...Ch. 2 - Consider two possible definitions of average...Ch. 2 - Is it possible to be at position x = 0 and still...
Ch. 2 - Is it possible to have zero velocity and still be...Ch. 2 - If you know the initial velocity v0 and the...Ch. 2 - Starting from rest, an object undergoes...Ch. 2 - In which of the velocity-versus-time graphs shown...Ch. 2 - If you travel in a straight line at 50 km/h for 1...Ch. 2 - If you travel in a straight line at 50 km/h for 50...Ch. 2 - In 2009, Usain Bolt of Jamaica set a world record...Ch. 2 - The standard 26-mile, 385-yard marathon dates to...Ch. 2 - Starting front home, you bicycle 24 km north in...Ch. 2 - The Voyager 1 spacecraft is expected to continue...Ch. 2 - In 2008, Australian Emma Snowsill set an...Ch. 2 - Taking Earths orbit to be a circle of radius 1.5 ...Ch. 2 - Whats the conversion factor from meters per second...Ch. 2 - On a single graph, plot distance versus time for...Ch. 2 - For the motion plotted in Fig. 2.15, estimate (a)...Ch. 2 - A model rocket is launched straight upward. Its...Ch. 2 - A giant eruption on the Sun propels solar material...Ch. 2 - Starting from rest, a subway train first...Ch. 2 - A space shuttles main engines cut off 8.5 min...Ch. 2 - An egg drops from a second-story window, taking...Ch. 2 - An airplanes takeoff speed is 320 km/h. If its...Ch. 2 - ThrustSSC, the worlds first supersonic car,...Ch. 2 - Youre driving at 70 km/h when you apply constant...Ch. 2 - Prob. 29ECh. 2 - An X-ray tube gives electrons constant...Ch. 2 - A rocket rises with constant acceleration to an...Ch. 2 - Starting from rest, a car accelerates at a...Ch. 2 - A car moving initially at 50 mi/h begins slowing...Ch. 2 - In a medical X-ray tube, electrons are accelerated...Ch. 2 - Californias Bay Area Rapid Transit System (BART)...Ch. 2 - Youre driving at speed v0 when you spot a...Ch. 2 - You drop a rock into a deep well and 4.4 s later...Ch. 2 - Your friend is sitting 6.5 m above you on a tree...Ch. 2 - A model rocket leaves the ground, heading straight...Ch. 2 - A foul ball leaves the bat going straight up at 23...Ch. 2 - A Frisbee is lodged in a tree 6.5 m above the...Ch. 2 - Space pirates kidnap an earthling and hold him on...Ch. 2 - You allow 40 min to drive 25 mi to the airport,...Ch. 2 - A base runner can get from first to second base in...Ch. 2 - You can run 9.0 m/s, 20% faster than your brother....Ch. 2 - A jetliner leaves San Francisco for New York, 4600...Ch. 2 - An objects position is given by x = bt + ct3 where...Ch. 2 - An objects position as a function of time t is...Ch. 2 - In a drag race, the position of a car as a...Ch. 2 - Squaring Equation 2.7 gives an expression for v2....Ch. 2 - During the complicated sequence that landed the...Ch. 2 - The position of a car in a drag race is measured...Ch. 2 - A fireworks rocket explodes at a height of 82.0 m,...Ch. 2 - The muscles in a grasshoppers legs can propel the...Ch. 2 - On packed snow, computerized antilock brakes can...Ch. 2 - A particle leaves its initial position x0 at time...Ch. 2 - A hockey puck moving at 32 m/s slams through a...Ch. 2 - Amtraks 20th-Century Limited is en route from...Ch. 2 - A jetliner touches down at 220 km/h and comes to a...Ch. 2 - A motorist suddenly notices a stalled car and...Ch. 2 - A racing car undergoing constant acceleration...Ch. 2 - The maximum braking acceleration of a car on a dry...Ch. 2 - After 35 min of running, at the 9-km point in a...Ch. 2 - Youre speeding at 85 km/h when you notice that...Ch. 2 - Airbags cushioned the Mars rover Spirits landing,...Ch. 2 - Calculate the speed with which cesium atoms must...Ch. 2 - A falling object travels one-fourth of its total...Ch. 2 - Youre on a NASA team engineering a probe to land...Ch. 2 - Youre atop a building of height h, and a friend is...Ch. 2 - A castles defenders throw rocks down on their...Ch. 2 - Two divers jump from a 3.00-m platform. One jumps...Ch. 2 - A balloon is rising at 10 m/s when its passenger...Ch. 2 - Landing on the Moon, a spacecraft fires its...Ch. 2 - Youre at mission control for a rocket launch,...Ch. 2 - Youre an investigator for the National...Ch. 2 - You toss a book into your dorm room, just clearing...Ch. 2 - Consider an object traversing a distance L, part...Ch. 2 - A particles position as a function of time is...Ch. 2 - Ice skaters, ballet dancers, and basketball...Ch. 2 - Youre staring idly out your dorm window when you...Ch. 2 - A police radars effective range is 1.0 km, and...Ch. 2 - An object starts moving in a straight line from...Ch. 2 - Youre a consultant on a movie set, and the...Ch. 2 - (a) For the ball in Example 2.6, find its velocity...Ch. 2 - Your roommate is an aspiring novelist and asks...Ch. 2 - You and your roommate plot to drop water balloons...Ch. 2 - Derive Equation 2.10 by integrating Equation 2.7...Ch. 2 - An objects acceleration increases quadratically...Ch. 2 - An objects acceleration is given by the expression...Ch. 2 - An objects acceleration decreases exponentially...Ch. 2 - A ball is dropped from rest at a height li0 above...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If all of Earths nitrogen-fixing prokaryotes were to die suddenly, what would happen to the concentration of ni...
Biology: Life on Earth with Physiology (11th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
60. You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forwardThe molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward
- 3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forward
- Pure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward5. Heat capacity often has a temperature dependence for real molecules, particularly if you go over a large temperature range. The heat capacity for liquid n-butane can be fit to the equation Cp(T) = a + bT where a = 100 J K₁₁ mol¹ and b = 0.1067 J K² mol¹ from its freezing point (T = 140 K) to its boiling point (T₁ = 270 K). A. Compute AH for heating butane from 170 K to 270 K. B. Compute AS for the same temperature range.arrow_forward4. How much energy must be transferred as heat to cause the quasi-static isothermal expansion of one mole of an ideal gas at 300 K from PA = 1 bar to PB = 0.5 bar? A. What is VA? B. What is VB? C. What is AU for the process? D. What is AH for the process? E. What is AS for the process?arrow_forward
- 1. The diagram shows the tube used in the Thomson experiment. a. State the KE of the electrons. b. Draw the path of the electron beam in the gravitational field of the earth. C. If the electric field directed upwards, deduce the direction of the magnetic field so it would be possible to balance the forces. electron gun 1KVarrow_forwardas a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?arrow_forward2. A thin Nichrome wire is used in an experiment to test Ohm's law using a power supply ranging from 0 to 12 V in steps of 2 V. Why isn't the graph of I vs V linear? 1. Nichrome wire does obey Ohm's law. Explain how that can that be true given the results abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY