BIO Head injuries in sports A research group at Dartmouth College has developed a Head Impact Telemetry (HIT) System that can be used to collect data about head accelerations during impacts on the playing field. The researchers observed 249,613 impacts from 423 football players at nine colleges and high schools and collected collision data from participants in other sports. The accelerations during most head impacts (>89%) in helmeted sports caused head accelerations less than a magnitude of 400 m/s 2 . However, a total of 11 concussions were diagnosed in players whose impacts caused accelerations between 600 and 1800 m/s 2 , with most of the 11 over 1000 m/s 2 . Suppose the average speed while stopping was 4 m/s (not necessarily the correct value) and the collision lasted 0.01 s. Which answer is closest to the head’s stopping distance (the distance it moves while stopping)? a. 0.04 m b. 0.4 m c. 4 m d. 0.02 m e. 0.004 m
BIO Head injuries in sports A research group at Dartmouth College has developed a Head Impact Telemetry (HIT) System that can be used to collect data about head accelerations during impacts on the playing field. The researchers observed 249,613 impacts from 423 football players at nine colleges and high schools and collected collision data from participants in other sports. The accelerations during most head impacts (>89%) in helmeted sports caused head accelerations less than a magnitude of 400 m/s 2 . However, a total of 11 concussions were diagnosed in players whose impacts caused accelerations between 600 and 1800 m/s 2 , with most of the 11 over 1000 m/s 2 . Suppose the average speed while stopping was 4 m/s (not necessarily the correct value) and the collision lasted 0.01 s. Which answer is closest to the head’s stopping distance (the distance it moves while stopping)? a. 0.04 m b. 0.4 m c. 4 m d. 0.02 m e. 0.004 m
BIO Head injuries in sports A research group at Dartmouth College has developed a Head Impact Telemetry (HIT) System that can be used to collect data about head accelerations during impacts on the playing field. The researchers observed 249,613 impacts from 423 football players at nine colleges and high schools and collected collision data from participants in other sports. The accelerations during most head impacts (>89%) in helmeted sports caused head accelerations less than a magnitude of 400 m/s2. However, a total of 11 concussions were diagnosed in players whose impacts caused accelerations between 600 and 1800 m/s2, with most of the 11 over 1000 m/s2.
Suppose the average speed while stopping was 4 m/s (not necessarily the correct value) and the collision lasted 0.01 s. Which answer is closest to the head’s stopping distance (the distance it moves while stopping)?
A golf club hits a golf ball and the golf ball’s flight reaches a maximum height of 5.48 m. Calculate the momentum of the golf ball at the maximum height if the mass of the golf ball is 0.459 kg.
•
Superposition Theorem
• Thevenin's and Norton's Theorem
1. Find the unknown voltage V₁, unknown resistances R1 and R2, and currents flowing through R1 and R2 for the
circuit shown below using Superposition Theorem.
40 V
+
R₁₂
w
B
C
♥16A
10A
www
4A
F
ww
2
E
Ꭰ
2. Use Thevenin's Theorem to find the current flowing in 3-ohm
resistor and its power dissipation from the circuit shown in the right.
+
3. Use Norton's Theorem for the same instruction as for No. 2.
8 V
A
www
202
B
wwww
20 Ω
10 V
+
302
202
www
C
-
12 V
502
www.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.