EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 88P

(a)

To determine

Minimum negative acceleration to avoid collision.

(a)

Expert Solution
Check Mark

Answer to Problem 88P

Minimum negative acceleration to avoid collision is 0.75m/s2 .

Explanation of Solution

Given:

Velocity of passenger train is 29m/s .

Separation between passenger and freight train when engineer sees it is 360m .

Velocity of freight train is 6m/s .

Reaction time of engineer is 0.4s

Formula used:

Write the expression for relative velocity.

  vir=(v1v2)  ........(1)

Here, vir is initial relative velocity, v1 is velocity of passenger train and v2 is velocity of freight train

Write the expression for distance covered between them during reaction time .

  s=(v1v2)tr  ........(2)

Here, s is distance covered between them during reaction time and tr is reaction time

Write the expression for remaining distance between trainsafter reaction time

  s1=(360s)  ........(3)

Here, s1 is remaining distance between trains after reaction time.

Write the expression for final relative velocity between the trains

  vrf2=(vri22amins1)  ........(4)

Here, vrf is final relative velocity which will be equal to zero in the case.

Calculation:

Substitute 29m/s for v1 and 6m/s for v2 in equation (1).

  vir=(296)vir=23m/s .

Substitute 29m/s for v1 , 6m/s for v2 and 0.4s for tr in equation (2).

  s=(296)0.4s=9.2m .

Substitute 9.2m for s in equation (3)

  s1=(3609.2)s1=350.8m

Substitute 23m/s for vir and 350.8m for s1 in equation (4)

  0=2322(amin)(350.8)amin=0.75m/s2

Conclusion:

Thus, the minimum negative acceleration to avoid collision is 0.75m/s2

(b)

To determine

Velocity of passenger train at minimum acceleration to avoid collision

(b)

Expert Solution
Check Mark

Answer to Problem 88P

Velocity of passenger train at minimum acceleration to avoid collision is 10.07m/s .

Explanation of Solution

Given:

Reaction time is 0.8s

Formula used:

Write expression for distance remaining between trains after reaction time

  s2=360(v1v2)tr  ........(5)

Here, s2 is distance remaining between trains after reaction time and tr is reaction time.

Write expression for final relative velocity.

  vfr=vir2as2  ........(6)

Here, vfr is final relative velocity.

Write expression for final relative velocity.

  vfr=v1v2  ........(7)

Calculation:

Substitute 29m/s for v1 and 6m/s for v2 and 0.8s for tr in equation (5)

  s2=360(23)0.8s2=341.6m .

Substitute 23m/s for vir , 0.75m/s2 for a and 341.6m for s2 in equation (6)

  vfr= 2322(0.75)(341.6)vfr=4.07m/s .

Substitute 4.07m/s for vfr and 6m/s for v2 in equation (7)

  4.07=v16v1=10.07m/s

Conclusion:

Thus, the velocity of passenger train at minimum acceleration to avoid collision is 10.07m/s .

(c)

To determine

Distance covered by passenger train between sighting and collision

(c)

Expert Solution
Check Mark

Answer to Problem 88P

The distance covered by passenger train between sighting and collision is 516.16m .

Explanation of Solution

Formula used:

Write the expression for time when train just collides.

  s2=virt12(0.75t2)  ........(8)

Write the expression for distance covered by passenger train between sighting and collision

  s3=v1(t+tr)12at2  ........(9)

Here, s3 is distance covered by passenger train between sighting and collision, t is time when train just collides.

Calculation:

Substitute 341.6m for s2 and 23m/s for vir in equation (8)

  341.6=23t12(0.75t2)t=25.23s .

Substitute 29m/s for v1 , 25.23s for t and 0.8s for tr in equation (9).

  s3=29(25.23+0.8)12(0.75)(25.23)2s3=516.16m

Conclusion:

Distance covered by passenger train between sighting and collision is 516.16m .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A positively charged disk has a uniform charge per unit area σ. dq R P x The total electric field at P is given by the following. Ek [2 - x (R² + x2) 1/2 Sketch the electric field lines in a plane perpendicular to the plane of the disk passing through its center.
Consider a closed triangular box resting within a horizontal electric field of magnitude E = 8.02  104 N/C as shown in the figure below. A closed right triangular box with its vertical side on the left and downward slope on the right rests within a horizontal electric field vector E that points from left to right. The box has a height of 10.0 cm and a depth of 30.0 cm. The downward slope of the box makes an angle of 60 degrees with the vertical. (a) Calculate the electric flux through the vertical rectangular surface of the box. kN · m2/C(b) Calculate the electric flux through the slanted surface of the box. kN · m2/C(c) Calculate the electric flux through the entire surface of the box. kN · m2/C
The figure below shows, at left, a solid disk of radius R = 0.600 m and mass 75.0 kg. Tu Mounted directly to it and coaxial with it is a pulley with a much smaller mass and a radius of r = 0.230 m. The disk and pulley assembly are on a frictionless axle. A belt is wrapped around the pulley and connected to an electric motor as shown on the right. The turning motor gives the disk and pulley a clockwise angular acceleration of 1.67 rad/s². The tension T in the upper (taut) segment of the belt is 145 N. (a) What is the tension (in N) in the lower (slack) segment of the belt? N (b) What If? You replace the belt with a different one (one slightly longer and looser, but still tight enough that it does not sag). You again turn on the motor so that the disk accelerates clockwise. The upper segment of the belt once again has a tension of 145 N, but now the tension in the lower belt is exactly zero. What is the magnitude of the angular acceleration (in rad/s²)? rad/s²

Chapter 2 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60PCh. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 66PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - Prob. 81PCh. 2 - Prob. 82PCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - Prob. 87PCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Prob. 91PCh. 2 - Prob. 92PCh. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - Prob. 104PCh. 2 - Prob. 105PCh. 2 - Prob. 106PCh. 2 - Prob. 107PCh. 2 - Prob. 108PCh. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Prob. 112PCh. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - Prob. 115PCh. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Prob. 118PCh. 2 - Prob. 119PCh. 2 - Prob. 120PCh. 2 - Prob. 121PCh. 2 - Prob. 122P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY