Concept explainers
(a)
At what time does the ball reach its maximum height?
(a)
Answer to Problem 83P
The ball reach its maximum height at
Explanation of Solution
The graph shown plots the velocity-time graph of the ball. When the ball reaches the maximum height, its velocity will be zero there. From the graph at time
Conclusion
Therefore, The ball reach its maximum height at
(b)
For how long is the ball in contact with the floor?
(b)
Answer to Problem 83P
The ball remains in contact with the floor for time of
Explanation of Solution
The graph shown plots the velocity-time graph of the ball. The time for which the ball remains in contact with the floor is equal to the time for which the ball makes a transition from its extreme negative velocity point to extreme positive velocity.
Write the equation to find the time of transition of ball.
Here,
Conclusion:
Substitute
Therefore, The ball remains in contact with the floor for time of
(c)
What is the maximum height reached by the ball?
(c)
Answer to Problem 83P
The maximum height reached by ball is
Explanation of Solution
Write the equation to find the maximum height reached by the rocket.
Here,
Substitute
Conclusion:
Substitute
Therefore, The maximum height reached by ball is
(d)
What is the acceleration of the ball while in the air?
(d)
Answer to Problem 83P
The acceleration of the ball while in the air is
Explanation of Solution
Write the equation to find the acceleration of the ball.
Here,
Conclusion:
Substitute
Since the acceleration is negative, it is acting down wards.
Therefore, The acceleration of the ball while in the air is
(e)
What is the average acceleration of the floor while in contact with the floor?
(e)
Answer to Problem 83P
The average acceleration of the ball is
Explanation of Solution
Write the equation to find the average acceleration of the ball.
Here,
Conclusion:
Substitute
Since the acceleration is positive, it is acting upwards.
Therefore, The average acceleration of the ball is
Want to see more full solutions like this?
Chapter 2 Solutions
Physics
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forward
- When the motorcyclist is at A, he increases his speed along the vertical circular path at the rate of = (0.3t) ft/s², where t is in seconds. Take p = 360 ft. (Figure 1) Part A 60° Ρ B If he starts from rest at A, determine the magnitude of his velocity when he reaches B. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer ་ Part B ? Units If he starts from rest at A, determine the magnitude of his acceleration when he reaches B. Express your answer to three significant figures and include the appropriate units. 11 ? a = Value Unitsarrow_forwardThe car starts from rest at s = 0 and increases its speed at a₁ = 7 m/s². (Figure 1) Part A = 40 m Determine the time when the magnitude of acceleration becomes 20 m/s². Express your answer to three significant figures and include the appropriate units. ? t = Value Units Part B At what position s does this occur? Express your answer to three significant figures and include the appropriate units. s = Value Submit Request Answer ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON