Consider an object traversing a distance L , part of the way at speed v 1 and the rest of the way at speed v 2 . Find expressions for the object’s average speed over the entire distance L when the object moves at each of the two speeds v 1 and v 2 for (a) half the total time and (b) half the total distance , (c) In which case is the average speed greater?
Consider an object traversing a distance L , part of the way at speed v 1 and the rest of the way at speed v 2 . Find expressions for the object’s average speed over the entire distance L when the object moves at each of the two speeds v 1 and v 2 for (a) half the total time and (b) half the total distance , (c) In which case is the average speed greater?
Consider an object traversing a distance L, part of the way at speed v1 and the rest of the way at speed v2. Find expressions for the object’s average speed over the entire distance L when the object moves at each of the two speeds v1 and v2 for (a) half the total time and (b) half the total distance, (c) In which case is the average speed greater?
A block of mass m₁ = 10.0 kg is connected to a block of mass m₂ = 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is
unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle 0 = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched.
m/s
Vm1
Vm2
m/s
mi
m2
k
i
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance yo, and then helps to
support any additional load. Consider a leaf spring constant of 5.45 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y = 0.500 m.
Truck body
Dyo
Axle
(a) What is the compression of the leaf spring for a load of 4.90 × 105 N?
m
(b) How much work is done compressing the springs?
]
A skier of mass 75 kg is pulled up a slope by a motor-driven cable.
(a) How much work is required to pull him 50 m up a 30° slope (assumed frictionless) at a constant speed of 2.8 m/s?
KJ
(b) What power (expressed in hp) must a motor have to perform this task?
hp
Chapter 2 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.