
FUNDAMENTALS OF PHYSICS - EXTENDED
12th Edition
ISBN: 9781119773511
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 70P
Two particles move along an x axis. The position of particle 1 is given by x = 6.00t2 + 3.00t + 2.00 (in meters and seconds); the acceleration of particle 2 is given by a = −8.00t (in meters per second squared and seconds) and, at t = 0, its velocity is 20 m/s. When the velocities of the particles match, what is their velocity?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
simple diagram to illustrate the setup for each law- coulombs law and biot savart law
Chapter 2 Solutions
FUNDAMENTALS OF PHYSICS - EXTENDED
Ch. 2 - Suppose that a passenger intent on lunch during...Ch. 2 - While driving a car at 90 km/h, how far do you...Ch. 2 - Compute your average velocity in the following two...Ch. 2 - SSM WWW An automobile travels on a straight road...Ch. 2 - A car moves uphill at 40 km/h and then back...Ch. 2 - SSM The position of an object moving along an x...Ch. 2 - The 1992 world speed record for a bicycle...Ch. 2 - Two trains, each having a speed of 30 km/h, are...Ch. 2 - ILW In 1 km races, runner 1 on track 1with time 2...Ch. 2 - To set a speed record in a measured straight-line...
Ch. 2 - GO You are to drive 300 km to an interview. The...Ch. 2 - ILW You drive on Interstate 10 from San Antonio to...Ch. 2 - GO An electron moving along the x axis has a...Ch. 2 - GO a If a particles position is given by x = 4 ...Ch. 2 - The position function xt of a particle moving...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - The position of a particle moving along an x axis...Ch. 2 - SSM At a certain time a particle had a speed of 18...Ch. 2 - a If the position of a particle is given by x =...Ch. 2 - From t = 0 to t = 5.00 min, a man stands still,...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - Catapulting mushrooms. Certain mushrooms launch...Ch. 2 - An electric vehicle starts from rest and...Ch. 2 - A muon an elementary particle enters a region with...Ch. 2 - An electron has a constant acceleration of 3.2...Ch. 2 - On a dry road, a car with good tires may be able...Ch. 2 - ILW A certain elevator cab has a total run of 190...Ch. 2 - The brakes on your car can slow you at a rate of...Ch. 2 - SSM Suppose a rocket ship in deep space moves with...Ch. 2 - SSM ILW A car traveling 56.0 km/h is 24.0 m from a...Ch. 2 - A car moves along an x axis through a distance of...Ch. 2 - a If the maximum acceleration that is tolerable...Ch. 2 - You are driving toward a traffic signal when it...Ch. 2 - GO You are arguing over a cell phone while...Ch. 2 - When startled, an armadillo will leap upward....Ch. 2 - SSM WWWa With what speed must a ball be thrown...Ch. 2 - Raindrops fall 1700 m from a cloud to the ground....Ch. 2 - SSMAt a construction site a pipe wrench struck the...Ch. 2 - A hoodlum throws a stone vertically downward with...Ch. 2 - SSM A hot-air balloon is ascending at the rate of...Ch. 2 - GO A bolt is dropped from a bridge under...Ch. 2 - SSM ILW A key falls from a bridge that is 45 m...Ch. 2 - GO A stone is dropped into a river from a bridge...Ch. 2 - SSM A ball of moist clay falls 15.0 m to the...Ch. 2 - To test the quality of a tennis ball, you drop it...Ch. 2 - An object falls a distance h from rest. If it...Ch. 2 - Water drips from the nozzle of a shower onto the...Ch. 2 - GO A rock is thrown vertically upward from ground...Ch. 2 - GO A steel ball is dropped from a buildings roof...Ch. 2 - A basketball player grabbing a rebound jumps76.0...Ch. 2 - GO A drowsy cat spots a flowerpot that sails first...Ch. 2 - Two particles move along an x axis. The position...Ch. 2 - In an arcade video game, a spot is programmed to...Ch. 2 - A rock is shot vertically upward from the edge of...Ch. 2 - GO At the instant the traffic light turns green,...Ch. 2 - GO To stop a car, first you require a certain...Ch. 2 - SSM A hot rod can accelerate from 0 to 60 km/h in...Ch. 2 - GO A red train traveling at 72 km/h and a green...Ch. 2 - A train started from rest and moved with constant...Ch. 2 - SSM A particles acceleration along an x axis is a...Ch. 2 - A rocket-driven sled running on a straight, level...Ch. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - Prob. 87PCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Prob. 91PCh. 2 - Prob. 92PCh. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - Prob. 104PCh. 2 - Prob. 105PCh. 2 - Prob. 106PCh. 2 - Prob. 107PCh. 2 - Prob. 108PCh. 2 - Prob. 109P
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why is living epithelial tissue limited to a certain thickness?
Human Anatomy & Physiology (2nd Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
Predict how many electrons each element will most likely gain or lose. a. l b. Ba c. Cs d. Se
Introductory Chemistry (6th Edition)
A mass of 6 lbm nitrogen gas at 3600 R, V=C , cools with 1 Btu/s. What is dT/dt?
Fundamentals Of Thermodynamics
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
Label the oldest exposed layers on the surface of both block diagrams, on both sides of the axial plane, with X...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forward
- Describe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward
- 3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forward
- When violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardCalculate the center of mass of the hollow cone shown below. Clearly specify the origin and the coordinate system you are using. Z r Y h Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY