The population of a herd of deer is modeled by P ( t ) = 4000 + 400 sin ( π 6 t ) + 180 sin ( π 3 t ) where t is measured in months from the first of April. (a) Use a calculator or computer to sketch a graph showing how this population varies with time. Use the graph to answer the following questions. (b) When is the herd largest? How many deer are in it at that time? (c) When is the herd smallest? How many deer are in it then? (d) When is the herd growing the fastest? When is it shrinking the fastest? (e) How fast is the herd growing on April 1?
The population of a herd of deer is modeled by P ( t ) = 4000 + 400 sin ( π 6 t ) + 180 sin ( π 3 t ) where t is measured in months from the first of April. (a) Use a calculator or computer to sketch a graph showing how this population varies with time. Use the graph to answer the following questions. (b) When is the herd largest? How many deer are in it at that time? (c) When is the herd smallest? How many deer are in it then? (d) When is the herd growing the fastest? When is it shrinking the fastest? (e) How fast is the herd growing on April 1?
Author: Deborah Hughes-Hallett, William G. McCallum, Andrew M. Gleason, Daniel E. Flath, Patti Frazer Lock, Sheldon P. Gordon, David O. Lomen, David Lovelock, Brad G. Osgood, Andrew Pasquale, Douglas Quinney, Jeff Tecosky-Feldman, Joseph Thrash, Karen R. Rhea, Thomas W. Tucker
The population of a herd of deer is modeled by
P
(
t
)
=
4000
+
400
sin
(
π
6
t
)
+
180
sin
(
π
3
t
)
where t is measured in months from the first of April.
(a) Use a calculator or computer to sketch a graph showing how this population varies with time. Use the graph to answer the following questions.
(b) When is the herd largest? How many deer are in it at that time?
(c) When is the herd smallest? How many deer are in it then?
(d) When is the herd growing the fastest? When is it shrinking the fastest?
Determine whether the lines
L₁ (t) = (-2,3, −1)t + (0,2,-3) and
L2 p(s) = (2, −3, 1)s + (-10, 17, -8)
intersect. If they do, find the point of intersection.
Convert the line given by the parametric equations y(t)
Enter the symmetric equations in alphabetic order.
(x(t)
= -4+6t
= 3-t
(z(t)
=
5-7t
to symmetric equations.
Find the point at which the line (t) = (4, -5,-4)+t(-2, -1,5) intersects the xy plane.
Chapter 2 Solutions
Calculus: Single And Multivariable, 7e Student Solutions Manual
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY