A 60-kg person stands on a scale in an elevator. How many newtons does the scale read (a) when the elevator is ascending with an acceleration of 1 m/s 2 ; (b) when it is descending with an acceleration of 1 m/s 2 ; (c) when it is ascending at a constant speed of 3 m/s; (d) when it is descending at a constant speed of 3 m/s; (e) when the cable has broken and the elevator is descending in free fall?
A 60-kg person stands on a scale in an elevator. How many newtons does the scale read (a) when the elevator is ascending with an acceleration of 1 m/s 2 ; (b) when it is descending with an acceleration of 1 m/s 2 ; (c) when it is ascending at a constant speed of 3 m/s; (d) when it is descending at a constant speed of 3 m/s; (e) when the cable has broken and the elevator is descending in free fall?
A 60-kg person stands on a scale in an elevator. How many newtons does the scale read (a) when the elevator is ascending with an acceleration of 1 m/s2; (b) when it is descending with an acceleration of 1 m/s2; (c) when it is ascending at a constant speed of 3 m/s; (d) when it is descending at a constant speed of 3 m/s; (e) when the cable has broken and the elevator is descending in free fall?
(a)
Expert Solution
To determine
The reading on the scale when the elevator is ascending with an acceleration of 1m/s2.
Answer to Problem 60E
The reading on the scale when the elevator is ascending with an acceleration of 1m/s2 is 648N.
Explanation of Solution
Given Info: The mass of the person is 60kg.
Write the expression for the force.
F=mg+ma
Here,
F is the force.
m is the mass.
a is the acceleration.
g is the acceleration due to gravity.
Substitute 60kg for m, 1m/s2 for a and 9.8m/s2 for g to find F.
F=(60kg)(9.8m/s2)+(600kg)(1m/s2)=648N
Conclusion:
Therefore, the reading on the scale when the elevator is ascending with an acceleration of 1m/s2 is 648N.
(b)
Expert Solution
To determine
The reading on the scale when the elevator is descending with an acceleration of 1m/s2.
Answer to Problem 60E
The reading on the scale when the elevator is descending with an acceleration of 1m/s2 is 528N.
Explanation of Solution
Given Info: The mass of the person is 60kg.
Write the expression for the force.
F=mg−ma
Substitute 60kg for m, 1m/s2 for a and 9.8m/s2 for g to find F.
F=(60kg)(9.8m/s2)−(600kg)(1m/s2)=528N
Conclusion:
Therefore, the reading on the scale when the elevator is descending with an acceleration of 1m/s2 is 528N.
(c)
Expert Solution
To determine
The reading on the scale when the elevator is ascending at a constant speed of 3m/s2.
Answer to Problem 60E
The reading on the scale when the elevator is ascending at a constant speed of 3m/s2 is 588N.
Explanation of Solution
Given Info: The mass of the person is 60kg.
Write the expression for the force.
F=mg
Substitute 60kg for m and 9.8m/s2 for g to find F.
F=(60kg)(9.8m/s2)=588N
Conclusion:
Therefore, the reading on the scale when the elevator is ascending at a constant speed of 3m/s2 is 588N.
(d)
Expert Solution
To determine
The reading on the scale when the elevator is descending at a constant speed of 3m/s2.
Answer to Problem 60E
The reading on the scale when the elevator is descending at a constant speed of 3m/s2 is 588N.
Explanation of Solution
Given Info: The mass of the person is 60kg.
Write the expression for the force.
F=mg
Substitute 60kg for m and 9.8m/s2 for g to find F.
F=(60kg)(9.8m/s2)=588N
Conclusion:
Therefore, the reading on the scale when the elevator is descending at a constant speed of 3m/s2 is 588N.
(e)
Expert Solution
To determine
The reading on the scale when the cable has broken, and the elevator is descending in freefall.
Answer to Problem 60E
The reading on the scale when the cable has broken, and the elevator is descending in freefall is zero.
Explanation of Solution
Given Info: The mass of the person is 60kg.
When the object is in freefall, the object feels weightless. This is because the acceleration of the object is same as the acceleration due to gravity. And thus, the object is weightless.
For the person in the lift, the reading on the scale depends on the acceleration of the lift. In freefall, the person feels no weight. And the reading on the scale is zero.
Conclusion:
Therefore, the reading on the scale when the cable has broken, and the elevator is descending in freefall is zero.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Starlord has a mass of 89.3 kg and Groot is pulling the bag with a force of 384. N at an angle of 35.0˚ as is shown in the figure below. What is the coefficient of kinetic friction if they are moving at a constant speed of 2.31 m/s?
Early on in the video game Shadow of the Tomb Raider Lara Croft uses a winch to pull a heavy crate of stone up a 23.6° incline. If Lara causes the 66.0 kg crate to accelerate at 2.79 m/s2 up the ramp, what is the tension in the rope pulling the block? The coefficient of kinetic friction between the block and the ground is 0.503.
A player kicks a football at the start of the game. After a 4 second flight, the ball touches the ground 50 m from the kicking tee. Assume air resistance is negligible and the take-off and landing height are the same (i.e., time to peak = time to fall = ½ total flight time). (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.