Calculus: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134763644
Author: William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 58RE
End behavior Determine the end behavior of the following functions.
40.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
help
The amount of money in a savings
account after tyears is represented by
the function(t) = 500(1.015)'.
What does the value 500 represent in
the situation?
The amount of money in the
savings account decreases by
$500 each year.
The amount of money in the
savings account is 500 times the
amount of the previous year.
The initial amount in the account
is $500.
O The amount of money in the
savings account increases by
$500 each year.
The concentration of a drug in the bloodtream t minutes after the injection is modeled by the function,
C(t) = 45te 0.04 Find the time when maximum concentration occurs.
O after 20 minutes
O after 25 minutes
O after 30 minutes
O after 35 minutes
Chapter 2 Solutions
Calculus: Early Transcendentals (3rd Edition)
Ch. 2.1 - In Example 1, what is the average velocity between...Ch. 2.1 - Explain the difference between average velocity...Ch. 2.1 - In Figure 2.5, is mtan at t=2 greater than or less...Ch. 2.1 - Suppose s(t) is the position of an object moving...Ch. 2.1 - Suppose s(t) is the position of an object moving...Ch. 2.1 - Basic Skills 7. Average velocity The function s(t)...Ch. 2.1 - Average velocity The function s(t) represents the...Ch. 2.1 - Average velocity The table gives the position s(t)...Ch. 2.1 - Average velocity The graph gives the position s(t)...Ch. 2.1 - Instantaneous velocity The following table gives...
Ch. 2.1 - Instantaneous velocity The following table gives...Ch. 2.1 - What is the slope of the secant Line that passes...Ch. 2.1 - Describe a process for finding the slope of the...Ch. 2.1 - Describe the parallels between finding the...Ch. 2.1 - Given the functionf(x)=16x2+64x, complete the...Ch. 2.1 - Average velocity The position of an object moving...Ch. 2.1 - Average velocity The position of an object moving...Ch. 2.1 - Average velocity Consider the position function...Ch. 2.1 - Average velocity Consider the position function...Ch. 2.1 - Instantaneous velocity Consider the position...Ch. 2.1 - Instantaneous velocity Consider the position...Ch. 2.1 - Instantaneous velocity Consider the position...Ch. 2.1 - Instantaneous velocity Consider the position...Ch. 2.1 - Instantaneous velocity For the following position...Ch. 2.1 - Instantaneous velocity For the following position...Ch. 2.1 - Instantaneous velocity For the following position...Ch. 2.1 - Instantaneous velocity For the following position...Ch. 2.1 - Slopes of tangent lines For the following...Ch. 2.1 - Slopes of tangent lines For the following...Ch. 2.1 - Slopes of tangent lines For the following...Ch. 2.1 - Slopes of tangent lines For the following...Ch. 2.1 - Tangent lines with zero slope a. Graph the...Ch. 2.1 - Tangent lines with zero slope a. Graph the...Ch. 2.1 - Zero velocity A projectile is fired vertically...Ch. 2.1 - Impact speed A rock is dropped off the edge of a...Ch. 2.1 - Slope of tangent line Given the function f(x) = 1 ...Ch. 2.2 - In Example 1, suppose we redefine the function at...Ch. 2.2 - Why is the graph of y=cos(1/x) difficult to plot...Ch. 2.2 - Explain the meaning of limxaf(x)=L.Ch. 2.2 - True or false: When limxaf(x) exists, it always...Ch. 2.2 - Finding limits from a graph Use the graph of h in...Ch. 2.2 - Finding limits from a graph Use the graph of g in...Ch. 2.2 - Finding limits from a graph Use the graph of f in...Ch. 2.2 - Finding limits from a graph Use the graph of f in...Ch. 2.2 - Estimating a limit from tables Let f(x)=x24x2. a....Ch. 2.2 - Estimating a limit from tables Let f(x)=x31x1. a....Ch. 2.2 - Estimating a limit numerically Let g(t)=t9t3. a....Ch. 2.2 - Estimating a limit numerically Let f(x) = (1 +...Ch. 2.2 - Explain the meaning of limxa+f(x)=L.Ch. 2.2 - Explain the meaning of limxaf(x)=L.Ch. 2.2 - If limxaf(x)=L and limxa+f(x)=M, where L and M are...Ch. 2.2 - Let g(x)=x34x8|x2| a. Calculate g(x) for each...Ch. 2.2 - Use the graph of f in the figure to find the...Ch. 2.2 - What are the potential problems of using a...Ch. 2.2 - Finding limits from a graph Use the graph of f in...Ch. 2.2 - One-sided and two-sided limits Use the graph of g...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Further Explorations 27. Explain why or why not...Ch. 2.2 - The Heaviside function The Heaviside function is...Ch. 2.2 - Postage rates Assume postage for sending a...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Strange behavior near x = 0 a. Create a table of...Ch. 2.2 - Strange behavior near x = 0 a. Create a table of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - A step function Let f(x)=xx, for x 0. a. Sketch a...Ch. 2.2 - The floor function For any real number x, the...Ch. 2.2 - The ceiling function For any real number x, the...Ch. 2.2 - Limits of even functions A function f is even if...Ch. 2.2 - Limits of odd functions A function g is odd if...Ch. 2.2 - Limits by graphs a. Use a graphing utility to...Ch. 2.2 - Limits by graphs Graph f(x)=sinnxx, for n = 1, 2,...Ch. 2.2 - Limits by graphs Use a graphing utility to plot...Ch. 2.3 - Use Theorem 2.4 to evaluate limx2(2x48x16) and...Ch. 2.3 - Use Theorem 2.4 to compute limx15x43x2+8x6x+1.Ch. 2.3 - Evaluate limx5x27x+10x5.Ch. 2.3 - Suppose f satisfies 1f(x)1+x26 for all values of x...Ch. 2.3 - How is limxap(x) calculated if p is a polynomial...Ch. 2.3 - Evaluate limx1(x3+3x23x+1).Ch. 2.3 - For what values of a does limxar(x)=r(a) if r is a...Ch. 2.3 - Evaluate limx4(x44x13x1).Ch. 2.3 - Explain why limx3x27x+12x3=limx3(x4) and then...Ch. 2.3 - Evaluate limx5(4x2100x5).Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Assume limx1f(x)=8 limx1g(x)=3, and limx1h(x)=2....Ch. 2.3 - How are limxap(x) and limxa+p(x) calculated if p...Ch. 2.3 - Suppose g(x)={2x+1ifx05ifx=0. Compute g(0) and...Ch. 2.3 - Suppose f(x)={4ifx3x+2ifx3. Compute limx3f(x) and...Ch. 2.3 - Suppose p and q are polynomials. If...Ch. 2.3 - Suppose limx2f(x)=limx2h(x)=5. Find limx2g(x),...Ch. 2.3 - Limits of linear functions Evaluate the following...Ch. 2.3 - Limits of linear functions Evaluate the following...Ch. 2.3 - Limits of linear functions Evaluate the following...Ch. 2.3 - Limits of linear functions Evaluate the following...Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Limits involving conjugates Evaluate the following...Ch. 2.3 - Limits involving conjugates Evaluate the following...Ch. 2.3 - Limits involving conjugates Evaluate the following...Ch. 2.3 - Limits involving conjugates Evaluate the following...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Explain why or why not Determine whether the...Ch. 2.3 - One-sided limits Let g(x)={5x15ifx46x+1ifx4....Ch. 2.3 - One-sided limits Let f(x)={x2ifx1x+1ifx1. Compute...Ch. 2.3 - One-sided limits Let f(x)={0ifx525x2if5x53xifx5....Ch. 2.3 - One-sided limits a. Evaluate limx2+x2. b. Explain...Ch. 2.3 - One-sided limits a. Evaluate limx3x32x. b. Explain...Ch. 2.3 - Prob. 77ECh. 2.3 - Torricellis Law A cylindrical tank is filled with...Ch. 2.3 - Limit of the radius of a cylinder A right circular...Ch. 2.3 - A problem from relativity theory Suppose a...Ch. 2.3 - Applying the Squeeze Theorem a. Show that...Ch. 2.3 - A cosine limit by the Squeeze Theorem It can be...Ch. 2.3 - A sine limit by the Squeeze Theorem It can be...Ch. 2.3 - A logarithm limit by the Squeeze Theorem a. Draw a...Ch. 2.3 - Absolute value limit Show that limx0x=0 by first...Ch. 2.3 - Absolute value limit Show that limxax=a, for any...Ch. 2.3 - Finding a constant Suppose...Ch. 2.3 - Finding a constant Suppose f(x)={3x+bifx2x2ifx2....Ch. 2.3 - Finding a constant Suppose g(x)={x25xifx1ax37ifx1....Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Slope of a tangent line a. Sketch a graph of y =...Ch. 2.3 - Prob. 96ECh. 2.3 - Even function limits Suppose f is an even function...Ch. 2.3 - Odd function limits Suppose g is an even function...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Evaluate limx16x42x16.Ch. 2.3 - Creating functions satisfying given limit...Ch. 2.3 - Creating functions satisfying given limit...Ch. 2.3 - Finding constants Find constants b and c in the...Ch. 2.3 - Limits of composite functions 88. If limx1f(x)=4,...Ch. 2.3 - Prob. 105ECh. 2.3 - Two trigonometric inequalities Consider the angle ...Ch. 2.3 - Prob. 107ECh. 2.4 - Sketch the graph of a function and its vertical...Ch. 2.4 - Analyze limx0+x5x and limx0x5x by determining the...Ch. 2.4 - Verify that x(x+4)0 through negative values as...Ch. 2.4 - The line x = 2 is not a vertical asymptote of...Ch. 2.4 - Explain the meaning of limxa+f(x)Ch. 2.4 - Explain the meaning of limxaf(x)=.Ch. 2.4 - What is a vertical asymptote?Ch. 2.4 - Consider the function F(x) = f(x)/g(x) with g(a) =...Ch. 2.4 - Analyzing infinite limits numerically Compute the...Ch. 2.4 - Analyzing infinite limits graphically Use the...Ch. 2.4 - Analyzing infinite limits graphically The graph of...Ch. 2.4 - Analyzing infinite limits graphically The graph of...Ch. 2.4 - Analyzing infinite limits graphically The graph of...Ch. 2.4 - Analyzing infinite limits graphically The graph of...Ch. 2.4 - Analyzing infinite limits graphically Graph the...Ch. 2.4 - Analyzing infinite limits graphically Graph the...Ch. 2.4 - Suppose f(x) 100 and g(x) 0, with g(x) 0, as x ...Ch. 2.4 - Evaluate limx31x3 and limx3+1x3.Ch. 2.4 - Verity that the function f(x)=x24x+3x23x+2 is...Ch. 2.4 - Evaluate limx0x+11cosx.Ch. 2.4 - Sketching graphs Sketch a possible graph of a...Ch. 2.4 - Sketching graphs Sketch a possible graph of a...Ch. 2.4 - Which of the following statements are correct?...Ch. 2.4 - Which of the following statements are correct?...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Trigonometric limits Determine the following...Ch. 2.4 - Trigonometric limits Determine the following...Ch. 2.4 - Trigonometric limits Determine the following...Ch. 2.4 - Trigonometric limits Determine the following...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Location of vertical asymptotes Analyze the...Ch. 2.4 - Location of vertical asymptotes Analyze the...Ch. 2.4 - Finding vertical asymptotes Find all vertical...Ch. 2.4 - Finding vertical asymptotes Find all vertical...Ch. 2.4 - Finding vertical asymptotes Find all vertical...Ch. 2.4 - Finding vertical asymptotes Find all vertical...Ch. 2.4 - Analyzing infinite limits graphically Graph the...Ch. 2.4 - Analyzing infinite limits graphically Graph the...Ch. 2.4 - Explain why or why not Determine whether the...Ch. 2.4 - Matching Match functions af with graphs AF in the...Ch. 2.4 - Finding a rational function Find a rational...Ch. 2.4 - Finding a function with vertical asymptotes Kind...Ch. 2.4 - Finding a function with infinite limits Give a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Prob. 65ECh. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Limits with a parameter Let f(x)=x27x+12xa. a. For...Ch. 2.4 - Steep secant lines a. Given the graph of f in the...Ch. 2.4 - Steep secant lines a. Given the graph of f in the...Ch. 2.5 - Evaluate x/(x+1) for x = 10,100, and 1000. What is...Ch. 2.5 - Describe the behavior of p(x)=3x3 as x and as xCh. 2.5 - Use Theorem 2.7 to find the vertical and...Ch. 2.5 - How do the functions e10x and e10x behave as x and...Ch. 2.5 - Explain the meaning of limxf(x)=10.Ch. 2.5 - Evaluate limxf(x) and limxf(x) using the figure.Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Prob. 4ECh. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Prob. 6ECh. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Determine limxf(x)g(x) if f(x) 100,000 and g(x) ...Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Evaluate limxex,limxex, and limxex.Ch. 2.5 - Describe the end behavior of g(x) = e2x.Ch. 2.5 - Suppose the function g satisfies the inequality...Ch. 2.5 - The graph of g has a vertical asymptote at x = 2...Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Horizontal asymptotes Determine limxf(x) and...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Horizontal asymptotes Determine limxf(x) and...Ch. 2.5 - Horizontal asymptotes Determine limxf(x) and...Ch. 2.5 - Horizontal asymptotes Determine limxf(x) and...Ch. 2.5 - Algebraic functions Determine limxf(x) and...Ch. 2.5 - Prob. 48ECh. 2.5 - Algebraic functions Determine limxf(x) and...Ch. 2.5 - Algebraic functions Determine limxf(x) and...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Explain why or why not Determine whether the...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Asymptotes Find the vertical and horizontal...Ch. 2.5 - End behavior for transcendental functions...Ch. 2.5 - Consider the graph of y = sec1 x (see Section 1.4)...Ch. 2.5 - End behavior for transcendental functions 64. The...Ch. 2.5 - End behavior for transcendental functions 65. The...Ch. 2.5 - Sketching graphs Sketch a possible graph of a...Ch. 2.5 - Sketching graphs Sketch a possible graph of a...Ch. 2.5 - Prob. 88ECh. 2.5 - Looking ahead to sequences A sequence is an...Ch. 2.5 - Prob. 90ECh. 2.5 - Prob. 91ECh. 2.5 - End behavior of a rational function Suppose...Ch. 2.5 - Horizontal and slant asymptotes a. Is it possible...Ch. 2.5 - End behavior of exponentials Use the following...Ch. 2.5 - Find the horizontal asymptotes of each function...Ch. 2.5 - Find the horizontal asymptotes of each function...Ch. 2.5 - Use analytical methods to identify all the...Ch. 2.6 - For what values of t in (0, 60) does the graph of...Ch. 2.6 - Modify the graphs of the functions t and g in...Ch. 2.6 - On what interval is f(x)=x1/4 continuous? On what...Ch. 2.6 - Show that f(x)=lnx4 is right-continuous at x = 1.Ch. 2.6 - Does the equation f(x)=x3+x+1=0 have a solution on...Ch. 2.6 - Which of the following functions are continuous...Ch. 2.6 - Give the three conditions that must be satisfied...Ch. 2.6 - What does it mean for a function to be continuous...Ch. 2.6 - We informally describe a function f to be...Ch. 2.6 - Determine the points on the interval (0, 5) at...Ch. 2.6 - Determine the points on the interval (0, 5) at...Ch. 2.6 - Determine the points on the interval (0, 5) at...Ch. 2.6 - Determine the points on the interval (0, 5) at...Ch. 2.6 - Complete the following sentences. a. A function is...Ch. 2.6 - Evaluate f(3) if limx3f(x)=5,limx3+f(x)=6, and f...Ch. 2.6 - Determine the intervals of continuity for the...Ch. 2.6 - Determine the intervals of continuity for the...Ch. 2.6 - Determine the intervals of continuity for the...Ch. 2.6 - Determine the intervals of continuity for the...Ch. 2.6 - What is the domain of f(x) = ex/x and where is f...Ch. 2.6 - Parking costs Determine the intervals of...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Limits of compositions Evaluate each limit and...Ch. 2.6 - Limits of compositions Evaluate each limit and...Ch. 2.6 - Limits of composite functions Evaluate each limit...Ch. 2.6 - Limits Evaluate each limit and justify your...Ch. 2.6 - Limits of compositions Evaluate each limit and...Ch. 2.6 - Limits of compositions Evaluate each limit and...Ch. 2.6 - Limits Evaluate each limit and justify your...Ch. 2.6 - Limits of composite functions Evaluate each limit...Ch. 2.6 - Intervals of continuity Let f(x)={2xifx1x2+3xifx1....Ch. 2.6 - Intervals of continuity Let...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Limits with roots Evaluate each limit and justify...Ch. 2.6 - Limits with roots Evaluate each limit and justify...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Limits with roots Evaluate each limit and justify...Ch. 2.6 - Limits with roots Evaluate each limit and justify...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Evaluate each limit. 59.limx0e4x1ex1Ch. 2.6 - Evaluate each limit. 60.limxe2ln2x5lnx+6lnx2Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Explain why or why not Determine whether the...Ch. 2.6 - Mortgage payments You are shopping for a 250,000....Ch. 2.6 - Intermediate Value Theorem and interest rates...Ch. 2.6 - Investment problem Assume you invest 250 at the...Ch. 2.6 - Find an interval containing a solution to the...Ch. 2.6 - Continuity of the absolute value function Prove...Ch. 2.6 - Continuity of functions with absolute values Use...Ch. 2.6 - Continuity of functions with absolute values Use...Ch. 2.6 - Continuity of functions with absolute values Use...Ch. 2.6 - Continuity of functions with absolute values Use...Ch. 2.6 - Pitfalls using technology The graph of the...Ch. 2.6 - Pitfalls using technology Graph the function...Ch. 2.6 - Sketching functions a. Sketch the graph of a...Ch. 2.6 - An unknown constant Determine the value of the...Ch. 2.6 - An unknown constant Let...Ch. 2.6 - Asymptotes of a function containing exponentials...Ch. 2.6 - Asymptotes of a function containing exponentials...Ch. 2.6 - Applying the Intermediate Value Theorem Use the...Ch. 2.6 - Applying the Intermediate Value Theorem Use the...Ch. 2.6 - Applying the Intermediate Value Theorem Suppose...Ch. 2.6 - The monk and the mountain A monk set out from a...Ch. 2.6 - Does continuity of |f| imply continuity of f? Let...Ch. 2.6 - Classifying discontinuities The discontinuities in...Ch. 2.6 - Classifying discontinuities The discontinuities in...Ch. 2.6 - Removable discontinuities Show that the following...Ch. 2.6 - Removable discontinuities Show that the following...Ch. 2.6 - Classifying discontinuities Classify the...Ch. 2.6 - Classifying discontinuities Classify the...Ch. 2.6 - Do removable discontinuities exist? See Exercises...Ch. 2.6 - Continuity of composite functions Prove Theorem...Ch. 2.6 - Continuity of compositions a. Find functions f and...Ch. 2.6 - Violation of the Intermediate Value Theorem? Let...Ch. 2.6 - Continuity of sin x and cos x a. Use the identity...Ch. 2.7 - In Example 1, find a positive number δ satisfying...Ch. 2.7 - Prob. 2QCCh. 2.7 - In Example 7, if N is increased by a factor of...Ch. 2.7 - Suppose x lies in the interval (1, 3) with x 2....Ch. 2.7 - Suppose f(x) lies in the interval (2, 6). What is...Ch. 2.7 - Which one of the following intervals is not...Ch. 2.7 - Prob. 4ECh. 2.7 - State the precise definition of limxaf(x)=L.Ch. 2.7 - Interpret |f(x) L| in words.Ch. 2.7 - Suppose |f(x) 5| 0.1 whenever 0 x 5. Find all...Ch. 2.7 - Give the definition of limxaf(x)= and interpret it...Ch. 2.7 - Determining values of from a graph The function f...Ch. 2.7 - Determining values of from a graph The function f...Ch. 2.7 - Determining values of from a graph The function f...Ch. 2.7 - Determining values of from a graph The function f...Ch. 2.7 - Finding for a given using a graph Let f(x) = x3...Ch. 2.7 - Finding for a given using a graph Let g(x) = 2x3...Ch. 2.7 - Finding a symmetric interval The function f in the...Ch. 2.7 - Finding a symmetric interval The function f in the...Ch. 2.7 - Finding a symmetric interval Let f(x)=2x22x1 and...Ch. 2.7 - Finding a symmetric interval Let...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Challenging limit proofs Use the definition of a...Ch. 2.7 - Challenging limit proofs Use the definition of a...Ch. 2.7 - Challenging limit proofs Use the definition of a...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Challenging limit proofs Use the definition of a...Ch. 2.7 - Proof of Limit Law 2 Suppose limxaf(x)=L and...Ch. 2.7 - Proof of Limit Law 3 Suppose limxaf(x)=L. Prove...Ch. 2.7 - Limit proofs for infinite limits Use the precise...Ch. 2.7 - Limit proofs for infinite limits Use the precise...Ch. 2.7 - Limit proofs for infinite limits Use the precise...Ch. 2.7 - Limit proofs for infinite limits Use the precise...Ch. 2.7 - Explain why or why not Determine whether the...Ch. 2.7 - Prob. 50ECh. 2.7 - Prob. 51ECh. 2.7 - Prob. 52ECh. 2.7 - Precise definitions for left- and right-sided...Ch. 2.7 - Precise definitions for left- and right-sided...Ch. 2.7 - Prob. 55ECh. 2.7 - The relationship between one-sided and two-sided...Ch. 2.7 - Definition of one-sided infinite limits We write...Ch. 2.7 - One-sided infinite limits Use the definitions...Ch. 2.7 - Prob. 59ECh. 2.7 - Definition of an infinite limit We write...Ch. 2.7 - Prob. 61ECh. 2.7 - Suppose limxaf(x)=. Prove that limxa(f(x)+c)= for...Ch. 2.7 - Suppose limxaf(x)= and limxa(x)=. Prove that...Ch. 2.7 - Definition of a limit at infinity The limit at...Ch. 2.7 - Definition of a limit at infinity The limit at...Ch. 2.7 - Definition of infinite limits at infinity We write...Ch. 2.7 - Definition of infinite limits at infinity We write...Ch. 2.7 - Prob. 68ECh. 2.7 - Prob. 69ECh. 2.7 - Proving that limxaf(x)L Use the following...Ch. 2.7 - Prob. 71ECh. 2.7 - Proving that limxaf(x)L Use the following...Ch. 2.7 - Prob. 73ECh. 2.7 - Show that ab|ab| for all constants a and b (Hint...Ch. 2 - Explain why or why not Determine whether the...Ch. 2 - The height above the ground of a stone thrown...Ch. 2 - A baseball is thrown upwards into the air; its...Ch. 2 - Estimating limits graphically Use the graph of f...Ch. 2 - Points of discontinuity Use the graph of f in the...Ch. 2 - Computing a limit graphically and analytically a....Ch. 2 - Computing a limit numerically and analytically a....Ch. 2 - Snowboard rental Suppose the rental cost for a...Ch. 2 - Sketching a graph Sketch the graph of a function f...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Prob. 12RECh. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - One-sided limits Analyze limx1+x1x3 and limx1x1x3.Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Prob. 39RECh. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Prob. 45RECh. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Prob. 48RECh. 2 - Calculating limits Determine the following limits....Ch. 2 - Prob. 50RECh. 2 - Calculating limits Determine the following limits....Ch. 2 - Applying the Squeeze Theorem Assume the function g...Ch. 2 - Applying the Squeeze Theorem a. Use a graphing...Ch. 2 - Finding vertical asymptotes Let f(x)=x25x+6x22x....Ch. 2 - End behavior Determine the end behavior of the...Ch. 2 - End behavior Determine the end behavior of the...Ch. 2 - End behavior Determine the end behavior of the...Ch. 2 - End behavior Determine the end behavior of the...Ch. 2 - End behavior Evaluate limxf(x) and limxf(x)....Ch. 2 - End behavior Evaluate limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Finding asymptotes Find all the asymptotes of the...Ch. 2 - Finding asymptotes Find all the asymptotes of the...Ch. 2 - Finding asymptotes Find all the asymptotes of the...Ch. 2 - Two slant asymptotes Explain why the function...Ch. 2 - Prob. 70RECh. 2 - Continuity at a point Determine whether the...Ch. 2 - Continuity at a point Determine whether the...Ch. 2 - Continuity at a point Use the continuity checklist...Ch. 2 - g(x)={x35x2+6xx2ifx22ifx=2;a=2Ch. 2 - Continuity on intervals Find the intervals on...Ch. 2 - Continuity on intervals Find the intervals on...Ch. 2 - Prob. 77RECh. 2 - Continuity on intervals Find the intervals on...Ch. 2 - Prob. 79RECh. 2 - Prob. 80RECh. 2 - Prob. 81RECh. 2 - Intermediate Value Theorem a. Use the Intermediate...Ch. 2 - x=cosx;(0,2)Ch. 2 - Suppose on a certain day the low temperature was...Ch. 2 - Antibiotic dosing The amount of an antibiotic (in...Ch. 2 - Limit proof Give a formal proof that limx1(5x2)=3.Ch. 2 - Limit proof Give a formal proof that...Ch. 2 - Prob. 88RECh. 2 - Prob. 89RECh. 2 - limx2+4x8=0Ch. 2 - Infinite limit proof Give a formal proof that...Ch. 2 - Limit proofs a. Assume | f(x)| L for all x near a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Find the counterclockwise circulation and outward flux of the field around and over the boundary of the region...
University Calculus: Early Transcendentals (3rd Edition)
Find the slopes of the following lines. The line going through the points (2,5)and(2,8).
Calculus & Its Applications (14th Edition)
Evaluate the integrals in Exercises 17–66.
20.
Thomas' Calculus: Early Transcendentals (14th Edition)
The intercepts of the equation 9 x 2 +4y=36 are ______. (pp.18-19)
Precalculus Enhanced with Graphing Utilities (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- The cost in dollars of making x items is given by the function Cx)=10x+500. a. The fixed cost is determined when zero items are produced. Find the fixed cost for this item. b.What is the cost of making 25 items? c.Suppose the maximum cost allowed is SI500. What are the domain and range of the cost function, C(x) ?arrow_forwardThe half-life of plutonium-244 is 80,000,000 years. Find function gives the amount of carbon-14 remaining as a function of time, measured in years.arrow_forwardUse your schools library, the Internet, or some other reference source to find real-life applications of approximations of functions.arrow_forward
- Repeat the previous exercise to find the formula forthe APY of an account that compounds daily. Usethe results from this and the previous exercise todevelop a function I(n)for the APY of any accountthat compounds n times per year.arrow_forwardWhen a certain drug is taken orally, the concentration of the drug in the patient's bloodstream After t minutes is given by C(t)=0.06t0.0002t2 where 0t240 and concentration is measured in mg/L .When is the maximum serum concentration reached, and what is that maximum concentration?arrow_forwardThe height h of a projectile is a function of the time t it is in die air. The height in feet for t seconds is given by the function h(t)=-16t2+96t . What is the domain of die function? What does the domain mean in the context of die problem?arrow_forward
- bThe average rate of change of the linear function f(x)=3x+5 between any two points is ________.arrow_forwardNear the surface of the moon, the distance that an object falls is a function of time. It is given by d(t)=2.6667t2 , where t is in seconds and d(t) is in feet. If an object is dropped from a certain height, find the average velocity of die object from t=1tot=2 .arrow_forwardDoes a Limiting Value Occur? A rocket ship is flying away from Earth at a constant velocity, and it continues on its course indefinitely. Let D(t) denote its distance from Earth after t years of travel. Do you expect that D has a limiting value?arrow_forward
- Find the average rate of change of f(x)=x2+2x8 on the interval [5,a] in simplest forms in terms ofa.arrow_forwardThe percentage y (of total personal consumption) an individual spends on food is approximately y = 33x-0.63 percentage points (2.5 < x < 4.5), where x is the percentage the individual spends on recreation.t A college student finds that he is spending x = 3.5 + 0.1t percent of his personal consumption on recreation, where t is time in months since January 1. Use direct substitution to express the percentage y as a function of time t (do not simplify the expression). (NOTE: January 1 is represented by t = 0.) y(t) = Use the chain rule to estimate how fast the percentage he spends on food is changing on March 1. (Round your answer to two decimal places.) Specify the units. O months per percentage point O percentage of budget on recreation per month percentage points per month O percentage points per percent of budget on recreationarrow_forwardThe population of a town can be modelled by the function P(t)= 20 (4t+3)/(2t+5), where P is the population, in thousands, and t is the time, in years, after the year 2000 (t > 0). Clearly label all cases (a, b, c,…). Answers must be clear to read and show all steps. Use appropriate units for your answers. What is the population in the year 2000? In what year will the population be 30 000? Town planners claim that they need not plan for a population above 40 000. Does the model support this conclusion? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY