PHYSICS:PRINCIPLES W/ APPLICATIONS
7th Edition
ISBN: 2818440037979
Author: GIANCOLI
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 58P
(a)
To determine
Period of time when velocity is constant.
(b)
To determine
To DeterminePeriod of time when velocity is greatest.
(c)
To determine
Period of time when velocity is zero.
d.
To determine
Direction of the objectat the particular time.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
need help with the first part
A ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following.
(a) the time interval during which the ball is in motion
2R
(b) the ball's speed at the peak of its path
v=
Rg 2
√ sin 26, V 3
(c) the initial vertical component of its velocity
Rg
sin ei
sin 20
(d) its initial speed
Rg
√ sin 20
×
(e) the angle 6, expressed in terms of arctan of a fraction.
1
(f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height.
hmax
R2
(g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range.
Xmax
R√3
2
An outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce.
8
(a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)?
24
(b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw.
Cone-bounce
no-bounce
0.940
Chapter 2 Solutions
PHYSICS:PRINCIPLES W/ APPLICATIONS
Ch. 2 - Two small heavy balls have the same diameter but...Ch. 2 - Does a car speedometer measure speed, velocity, or...Ch. 2 - When an constant velocity, does its during any...Ch. 2 - Prob. 3QCh. 2 - Prob. 4QCh. 2 - Prob. 5QCh. 2 - Prob. 6QCh. 2 - Give an example where both the velocity and...Ch. 2 - Can an object be increasing in speed as its...Ch. 2 - Two cars emerge side by side from a tunnel. Car A...
Ch. 2 - A baseball player hits a ball straight up into the...Ch. 2 - As a freely falling object speeds up, what is...Ch. 2 - You travel from point A to point B in a car moving...Ch. 2 - Can an object have zero velocity and nonzero...Ch. 2 - Can an object have zero acceleration and nonzero...Ch. 2 - Which of these motions is not at constant...Ch. 2 - Describe in words the motion plotted in Fig. 2-32...Ch. 2 - Describe in words the motion of the object graphed...Ch. 2 - Which of the following should be part of solving...Ch. 2 - In which of the following cases does a car nave a...Ch. 2 - At time t = 0 an object is traveling to the right...Ch. 2 - A ball is thrown straight up. What are the...Ch. 2 - You drop a rock off a bridge. When the rock has...Ch. 2 - You drive 4 km at 30 km/h and then another 4 km at...Ch. 2 - A ball is dropped from the top of a tall building....Ch. 2 - A ball is thrown downward at a speed of 20 m/s....Ch. 2 - A car travels along the x axis with increasing...Ch. 2 - If you are driving 95 km/h along a straight road...Ch. 2 - What must your car's average speed be in order to...Ch. 2 - A particle at t1= 2.0 s is atx1=4.8cm and at t2=...Ch. 2 - A rolling ball moves from x1 =8.4 cm to x2 =-4.2...Ch. 2 - A bird can fly 25 km/h. How long does it take to...Ch. 2 - According to a rule-of-thumb, each five seconds...Ch. 2 - You are driving home from school steadily at 95...Ch. 2 - Prob. 8PCh. 2 - A person jogs eight complete laps around a 400-m...Ch. 2 - Prob. 10PCh. 2 - A car traveling 95 km/h is 210 m behind a truck...Ch. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - A sports car accelerates from rest to 95 km/h in...Ch. 2 - Prob. 18PCh. 2 - 19.(II) A sports car moving at constant velocity...Ch. 2 - Prob. 20PCh. 2 - 21.(II) A car moving in a straight line starts at...Ch. 2 - A car slows down from 28 m/s to rest in a distance...Ch. 2 - A car accelerates from 14 m/s in 6.0 s. What was...Ch. 2 - A light plane must reach a speed of 35 m/s for...Ch. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - 27.(II) A car slows down uniformly from a speed of...Ch. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Detemine the stopping distances for an automobile...Ch. 2 - A driver is traveling 18.0 m/s when she sees a red...Ch. 2 - 33.(II) A 75-m-long train begins uniform...Ch. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - 37.(III) Marry and Sally are in a foot race (Fig....Ch. 2 - 38.(III) An unmarked police car traveling a...Ch. 2 - A stone is dropped from the top of a cliff. It is...Ch. 2 - Estimate (a) how long it look King Kong to fall...Ch. 2 - A ball player catches a ball 3.4 s after throwing...Ch. 2 - Prob. 42PCh. 2 - A kangaroo jumps straight up to a vertical height...Ch. 2 - The best rebounders in basketball have a vertical...Ch. 2 - An object starts from rest and fails under the...Ch. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - A rocket rises vertically, from rest, with an...Ch. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60GPCh. 2 - Prob. 61GPCh. 2 - Prob. 62GPCh. 2 - Prob. 63GPCh. 2 - Prob. 64GPCh. 2 - Prob. 65GPCh. 2 - Prob. 66GPCh. 2 - Prob. 67GPCh. 2 - Prob. 68GPCh. 2 - Prob. 69GPCh. 2 - Prob. 70GPCh. 2 - Prob. 71GPCh. 2 - Prob. 72GPCh. 2 - Prob. 73GPCh. 2 - Prob. 74GPCh. 2 - Prob. 75GPCh. 2 - A conveyor belt is used to send burgers through a...Ch. 2 - Two students are asked to find the height of a...Ch. 2 - Prob. 78GPCh. 2 - A race car driver must average 200.0 km/h over the...Ch. 2 - Prob. 80GPCh. 2 - Prob. 81GPCh. 2 - Prob. 82GPCh. 2 - On an audio compact disc (CD), digital bits of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 1445.46 Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Find its total time of flight. 36.16 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s (c) Find its horizontal range. 1753.12 × Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forward
- How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forwardHello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forwardFind the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forward
- Which of the following laws is true regarding tensile strength? • tensile strength T ①Fbreak = Wtfest Piece thickness rate (mm) ②T = test piece width rabe (mm) Fbreak break watarrow_forwardThe position of a squirrel running in a park is given by = [(0.280 m/s)t + (0.0360 m/s²)t²] + (0.0190 m/s³)ť³ĵj. What is v₂(t), the x-component of the velocity of the squirrel, as a function of time?arrow_forwardNo chatgpt pls will upvotearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY