Modern Physics, 3rd Edition
Modern Physics, 3rd Edition
3rd Edition
ISBN: 9780534493394
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 4P

A charged particle moves along a straight line in a uniform electric field E with a speed v. If the motion and the electric field are both in the x direction, (a) show that the magnitude of the acceleration of the charge q is given by

a = d v d t = q E m ( 1 v 2 c 2 ) 3 / 2

(b) Discuss the significance of the dependence of the acceleration on the speed. (c) If the particle starts from rest at x = 0 at t = 0, find the speed of the particle and its position after a time t has elapsed. Comment on the limiting values of v and x as t →∞.

(a)

Expert Solution
Check Mark
To determine

The magnitude of acceleration of the charge.

Answer to Problem 4P

It is proved that the acceleration of the charged particle is a=(qE/m)(1(v2/c2))3/2.

Explanation of Solution

Write the equation for the relativistic momentum.

    p=γmv=mv[1(v2/c2)]1/2        (I)

Here, p is the relativistic momentum of the particle, m is the mass of the particle, v is the velocity of the particle and c is the speed of light.

Write the equation for relativistic force.

    F=dpdt        (II)

Here, F is the relativistic force, p is the relativistic momentum that changes with time t.

Substitute equation (I) in (II).

    F=ddt{mv[1(v2/c2)]1/2}=m[1(v2/c2)]3/2(dvdt)        (III)

Write the equation for the force in terms of electric field.

    F=qE        (IV)

Here, F is the force on the charged particle, q is the charge of the particle and E is the electric field.

Conclusion:

Substitute equation (IV) in (III) and rearrange.

    qE=m[1(v2/c2)]3/2(dvdt)a=dvdt=(qEm)(1v2c2)3/2        (V)

Hence, the given equation for the acceleration of the charged particle is proved.                   

(b)

Expert Solution
Check Mark
To determine

The significance of dependence of acceleration on speed.

Answer to Problem 4P

It signifies that no particle can move with a speed greater than the speed of light.

Explanation of Solution

Equation (V) gives the expression for the acceleration of the charged particle.

Conclusion:

From equation (V), as vc, a0. Hence, it supports the fact that no speed can exceed the speed of light. 

(c)

Expert Solution
Check Mark
To determine

The speed and position of the particle.

Answer to Problem 4P

The speed of the particle is v=qEct/[(mc)2+(qEt)2]1/2 and the position of the particle is x=(c/qE){[(mc)2+(qEt)2]1/2mc}.

Explanation of Solution

Rearrange equation (V) to separate the variables.

    dv(1v2/c2)3/2=(qEm)dt

Conclusion:

Integrate the above equation by giving proper limits.

    0vdv(1v2/c2)3/2=0tqEmdtv(1v2/c2)1/2|0v=qEtmv2(1v2/c2)1/2=(qEtm)2=qEtmv2=(qEtm)2(v2c2)(qEtm)2

Simplify further.

    v2[1+(qEtm)2]=(qEtm)2v2=(qEt/mc)21+(qEt/mc)2v2=(qEct)2(mc)2+(qEt)2

The limiting behavior of v as t0 and t is reasonable.

    v=dxdt=qEct[(mc)2+(qEt)2]1/2x=qEc[(mc)2+(qEt)2]1/2[1(qE)2]|0t=cqE{[(mc)2+(qEt)2]1/2mc}

Here, as t0, x0. Also, as t, xct.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?
You want to fabricate a soft microfluidic chip like the one below. How would you go about fabricating this chip knowing that you are targeting a channel with a square cross-sectional profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the process to form the inlet and outlet. Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device. 2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer with the pattern below. Describe the process you would use. High Aspect Ratio Trenches Undoped Si Wafer P-doped Si 3. You would like to deposit material within a high aspect ratio trench. What approach would you use and why? 4. A person is setting up a small clean room space to carry out an outreach activity to educate high school students about patterning using photolithography. They obtained a positive photoresist, a used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full resist gets developed, and they are unable to transfer the pattern onto the resist. Help them troubleshoot and find out why pattern of transfer has not been successful. 5. You are given a composite…

Chapter 2 Solutions

Modern Physics, 3rd Edition

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY