Modern Physics, 3rd Edition
Modern Physics, 3rd Edition
3rd Edition
ISBN: 9780534493394
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 4P

A charged particle moves along a straight line in a uniform electric field E with a speed v. If the motion and the electric field are both in the x direction, (a) show that the magnitude of the acceleration of the charge q is given by

a = d v d t = q E m ( 1 v 2 c 2 ) 3 / 2

(b) Discuss the significance of the dependence of the acceleration on the speed. (c) If the particle starts from rest at x = 0 at t = 0, find the speed of the particle and its position after a time t has elapsed. Comment on the limiting values of v and x as t →∞.

(a)

Expert Solution
Check Mark
To determine

The magnitude of acceleration of the charge.

Answer to Problem 4P

It is proved that the acceleration of the charged particle is a=(qE/m)(1(v2/c2))3/2.

Explanation of Solution

Write the equation for the relativistic momentum.

    p=γmv=mv[1(v2/c2)]1/2        (I)

Here, p is the relativistic momentum of the particle, m is the mass of the particle, v is the velocity of the particle and c is the speed of light.

Write the equation for relativistic force.

    F=dpdt        (II)

Here, F is the relativistic force, p is the relativistic momentum that changes with time t.

Substitute equation (I) in (II).

    F=ddt{mv[1(v2/c2)]1/2}=m[1(v2/c2)]3/2(dvdt)        (III)

Write the equation for the force in terms of electric field.

    F=qE        (IV)

Here, F is the force on the charged particle, q is the charge of the particle and E is the electric field.

Conclusion:

Substitute equation (IV) in (III) and rearrange.

    qE=m[1(v2/c2)]3/2(dvdt)a=dvdt=(qEm)(1v2c2)3/2        (V)

Hence, the given equation for the acceleration of the charged particle is proved.                   

(b)

Expert Solution
Check Mark
To determine

The significance of dependence of acceleration on speed.

Answer to Problem 4P

It signifies that no particle can move with a speed greater than the speed of light.

Explanation of Solution

Equation (V) gives the expression for the acceleration of the charged particle.

Conclusion:

From equation (V), as vc, a0. Hence, it supports the fact that no speed can exceed the speed of light. 

(c)

Expert Solution
Check Mark
To determine

The speed and position of the particle.

Answer to Problem 4P

The speed of the particle is v=qEct/[(mc)2+(qEt)2]1/2 and the position of the particle is x=(c/qE){[(mc)2+(qEt)2]1/2mc}.

Explanation of Solution

Rearrange equation (V) to separate the variables.

    dv(1v2/c2)3/2=(qEm)dt

Conclusion:

Integrate the above equation by giving proper limits.

    0vdv(1v2/c2)3/2=0tqEmdtv(1v2/c2)1/2|0v=qEtmv2(1v2/c2)1/2=(qEtm)2=qEtmv2=(qEtm)2(v2c2)(qEtm)2

Simplify further.

    v2[1+(qEtm)2]=(qEtm)2v2=(qEt/mc)21+(qEt/mc)2v2=(qEct)2(mc)2+(qEt)2

The limiting behavior of v as t0 and t is reasonable.

    v=dxdt=qEct[(mc)2+(qEt)2]1/2x=qEc[(mc)2+(qEt)2]1/2[1(qE)2]|0t=cqE{[(mc)2+(qEt)2]1/2mc}

Here, as t0, x0. Also, as t, xct.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2.62 Collision. The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of 0.100 m/s² in a direction opposite to the train's velocity, while the freight train continues with constant speed. Take x = 0 at the location of the front of the passenger train when the engineer applies the brakes. (a) Will the cows nearby witness a collision? (b) If so, where will it take place? (c) On a single graph, sketch the positions of the front of the pas- senger train and the back of the freight train.
Can I get help with how to calculate total displacement? The answer is 78.3x-4.8y
2.70 Egg Drop. You are on the Figure P2.70 roof of the physics building, 46.0 m above the ground (Fig. P2.70). Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s. If you wish to drop an egg on your profes- sor's head, where should the profes- sor be when you release the egg? Assume that the egg is in free fall. 2.71 CALC The acceleration of a particle is given by ax(t) = -2.00 m/s² +(3.00 m/s³)t. (a) Find the initial velocity Vox such that v = 1.20 m/s 1.80 m 46.0 m

Chapter 2 Solutions

Modern Physics, 3rd Edition

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY