21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 40QP
(a)
To determine
Find the time in which the vernal equinox spends in each zodiacal constellation.
(b)
To determine
Find the constellation in which the ancient builder saw the vernal equinox.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Based on what you've learn on the impact of the Earth-Sun distance on the seasons, what can you say about the the cause of the seasons? (Give ALL correct answers, i.e., B, AC, BCD...)A) Earth's axis is tilted an an angle of 23.5 degrees compared to a line perpendicular (straight up and down) to its orbit, which is the main cause for the seasons.B) Earth's speed varies in its orbit around the Sun, giving us summer when Earth is moving fastest and winter when Earth is moving slowest.C) The Earth-Sun distance play a major role in creating seasons on Earth.D) The tilt of Earth's axis causes the Northern Hemisphere to be closer to the Sun than the southern hemisphere in summer, and vice versa in winter. E) The tilt of Earth's axis causes different portions of the Earth to receive more or less direct sunlight at different times of year.F) Earth's Northern Hemisphere is always tilted away from the Sun at an angle of 23.5 degrees.G) Earth's Northern Hemisphere is always tilted toward the Sun…
select the most accurate statement
You are standing at Earth's North Pole. It is dark, and the stars are out. What is an accurate description of where you need to look in order to find Polaris (the North Star)?
Select one:
a.
straight overhead
b.
directly on the horizon
c.
about halfway up from the horizon to the zenith
d.
the North Star is not visible from this location
Chapter 2 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 2.1 - Prob. 2.1ACYUCh. 2.1 - Prob. 2.1BCYUCh. 2.2 - Prob. 2.2CYUCh. 2.3 - Prob. 2.3CYUCh. 2.4 - Prob. 2.4CYUCh. 2.5 - Prob. 2.5CYUCh. 2 - Prob. 1QPCh. 2 - Prob. 2QPCh. 2 - Prob. 3QPCh. 2 - Prob. 4QP
Ch. 2 - Prob. 5QPCh. 2 - Prob. 6QPCh. 2 - Prob. 7QPCh. 2 - Prob. 8QPCh. 2 - Prob. 9QPCh. 2 - Prob. 10QPCh. 2 - Prob. 11QPCh. 2 - Prob. 12QPCh. 2 - Prob. 13QPCh. 2 - Prob. 14QPCh. 2 - Prob. 15QPCh. 2 - Prob. 16QPCh. 2 - Prob. 17QPCh. 2 - Prob. 18QPCh. 2 - Prob. 19QPCh. 2 - Prob. 20QPCh. 2 - Prob. 21QPCh. 2 - Prob. 22QPCh. 2 - Prob. 23QPCh. 2 - Prob. 24QPCh. 2 - Prob. 25QPCh. 2 - Prob. 26QPCh. 2 - Prob. 27QPCh. 2 - Prob. 28QPCh. 2 - Prob. 29QPCh. 2 - Prob. 30QPCh. 2 - Prob. 31QPCh. 2 - Prob. 33QPCh. 2 - Prob. 34QPCh. 2 - Prob. 35QPCh. 2 - Prob. 36QPCh. 2 - Prob. 37QPCh. 2 - Prob. 38QPCh. 2 - Prob. 39QPCh. 2 - Prob. 40QPCh. 2 - Prob. 41QPCh. 2 - Prob. 42QPCh. 2 - Prob. 43QPCh. 2 - Prob. 44QPCh. 2 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- H3. A total lunar eclipse is observed on December 31. Predict the next lunar eclipse. A total lunar eclipse will occur when the full moon and the nominal orbit of the moon line up together (The solution of two equations). From the following data algebraic equation for the phase of the moon and nominal orbit of the moon can be formed. A new moon (0%) was observed on December 17 and the full moon (10%) was observed on December 31 along with the nominal orbit of the moon (0%). The brimming orbit of the moon (100%) was observed on November 29. When the two equations are equal a lunar eclipse will occur. How many days from December 31 will next lunar eclipse occur? Given the coming year is a leap year - on what dates will the next 4 total lunar eclipses occur? Show the algebraic solution, any information you use.arrow_forward7. Suppose you are on a strange planet and observe, at night, that the stars do not rise and set, but circle parallel to the horizon. Next, you walk in a constant direction for 8000 miles, and at your new location on the planet, you find that all stars rise straight up in the east and set straight down in the west, perpendicular to the horizon. How could you determine the circumference of the planet without any further observations? What is the circumference, in miles, of the planet? [OER Chapter 2, Figuring for Yourself #43]arrow_forwardFor an entire year, you carefully plot and track the sun's position relative to the background stars (i.e., the celestial sphere). Which of the following is an accurate description of what you observe for the sun's annual drift relative to the celestial sphere? Select one: a. the sun appears to shift only north or south, with no apparent drift east or west b. each day, the sun appears to drift primarily from east to west c. each day, the sun appears to drift primarily from west to east d. the sun does not appear to drift at all relative to the background stars, as defined by our 24 hour dayarrow_forward
- Use the table to answer questions 13 through 15. A student collects the following data about the Sun, stars, moon, and Earth. Time of Day Sun Visible Moon Visible Stars Visible 5 am Sun Location Near horizon Above horizon Overhead Yes No Yes 10 am No Yes No No 1 pm 5 pm 9 pm Yes No Near horizon No Yes No Not visible No Yes Yes O What research question is the student investigating? A. How long does it take Earth to rotate on its axis? B. Does the moon rotate at a faster rate than Earth does? C. How do the locations of the stars relate to the moon? D. What is the relationship between time of day and seeing objects in the sky?arrow_forwardAssume you live on the Moon near the center of the face that looks toward Earth. a. If you saw a full Earth in your sky, what phase of the Moon would people on Earth see? Draw a diagram. b. If people on Earth saw a full moon, what phase would you see for Earth? Draw a diagram. c. If people on Earth saw a waxing gibbous moon, what phase would you see for Earth? Draw a diagram. d. If people on Earth were viewing a total lunar eclipse, what would you see from your home on the Moon? Draw a diagram. Why were the main reasons why the idea that the Earth was at the center of the universe lasted so long? Discuss in 2 paragraphs the observations made by Galileo that disproved Geocentrism. Which one do you think was the most important? Write down a hypothesis and observational experiment to test one of Newton’s laws of motion. EXPLAIN YOUR REASONING! One of the first exoplanets discovered orbits the star 51 Pegasi with a period of just 4.2 days. 51 Pegasi is very similar to the Sun. Use Kepler’s…arrow_forward6. A star is observed to cross the meridian (due south) at an elevation of 34°, as seen from an observatory sited at a latitude of 42° north. What is the declination of the star? At the moment of transit, a clock running on Universal Time (UT) read 03 h 16min 24 s. At the previous midnight, the sidereal time was 14h 38 min 54 s. Calculate the Right Ascension of the star.arrow_forward
- Please do not make joke on this question.. I have asked 3 times and get wrong answerarrow_forwardWhich is not true about Aristotle’s astronomical beliefs? * A. He believed in celestial spheres. B. He believed that the world is a sphere. C. He supported the idea of geocentric universe D. He suggested that Earth revolves around the sun. 3.The apparent daily motion of the stars as a result of Earth’s rotation about its axis is called______. * A. Annual motion B. Diurnal motion C. Retrograde motion D. Precession of the equinoxesarrow_forwardBACKGROUND An ingenious solution to the Earth's circumference occured in 230 BC. Eratosthenes, a Greek geographer, mathematician, music theorist, poet, astronomer, and philosopher, was reading in the Library of Alexandria when he noticed an account for a deep well near Syene (now Aswan), some distance to the south (800 km) in which at high noon on the longest day of the year the bottom of the well was fully illuminated by the Sun. Eratosthenes exclaimed "Ah-ah!" (or something like that), "I can solve for the circumference of the Earth!". In his mind's eye, Eratosthenes could see that at Syene, at the moment when the bottom of the well was fully lit, the Sun must have been at the Zenith (directly overhead). Yet he knew that at the same moment in Alexandria vertical objects (like a tower, pole) cast shadows. Here is the experiment perfomed by Eratosthenes (see the picture below). • He erected a vertical pole at Alexandria (A) and measured the angle of its shadow at the moment when the…arrow_forward
- Which statement describes the sun's position relative to planetary orbits? A. The sun is at the center of each planet's circular orbit. B. The sun is midway between the foci of each planet's elliptical orbit. C. The sun is one focus of each planet's elliptical orbit. D. The sun alternates between the two foci of planetary orbits.arrow_forwardYou take the 10:30 pm bus home after studying at the library. While you wait at the bus stop, what phases of the Moon could you possibly see? A. waxing crescent through full Moon B. full Moon through waning crescent O C. new Moon through waxing gibbous D. waxing gibbous through third quarter O E. first quarter through waning gibbousarrow_forwardSome Canadians troups are sent (as part of a U.N. peacekeeping force) to a country located on the Earth's equator. At night, when homesickness makes them gaze sleeplessly at the stars, which of the following will be familiar to them (the same as the equator in Canada) 1. The celestial poles are on the north and south points of the horizon. 2. The celestial equator is overhead and passes through the zenith. 3. All stars rise and set ( no star in the sky all night long) 4. All stars are above the horizon exactly half a day. 5. None of the Abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY