Traffic And Highway Engineering
Traffic And Highway Engineering
5th Edition
ISBN: 9781133605157
Author: Garber, Nicholas J., Hoel, Lester A.
Publisher: Cengage Learning,
bartleby

Concept explainers

Question
Book Icon
Chapter 2, Problem 3P
To determine

(a)

The volume of traffic across the bridge.

Expert Solution
Check Mark

Answer to Problem 3P

The volume of traffic across the bridge is 333.33veh/hr.

Explanation of Solution

Given:

The total cost to travel across bridge except tolls is expressed as,

  C=50+0.5V.

Here, V is the number of vehicles per hour and C is the cost/veh in cents.

The demand to travel across the bridge is,

  V=250010C.

Calculations:

Calculate volume of traffic across the bridge.

The total cost to travel across bridge except tolls is,

  C=50+0.5V ....... (I)

The volume across the bridge is,

  V=250010C ....... (II)

Solve Equations (I) and (II).

  C=216.67

  V=333.33

Conclusion:

Therefore, the volume of traffic across the bridge is 333.33veh/hr.

To determine

(b)

The volume of traffic across the bridge if a toll of 25cents is added and for 50cents increase.

Expert Solution
Check Mark

Answer to Problem 3P

The volume of traffic across the bridge if a toll of 25cents is added is 291.67veh/hr and for 50cents increase is 327.49veh/hr.

Explanation of Solution

Concept used:

Write the expression to calculate the volume expected for a 50cents increase.

  V=V(V new50)

Here, Vnew is the volume of traffic across the bridge if toll is increased to 25cents and V is the volume of traffic across the bridge.

Calculations:

Calculate volume of traffic across the bridge if toll is increased to 25cents.

The new cost of the cost of travel across bridge is,

  C=50+0.5V+25

Substitute (50+0.5V+25) for C in Equation (II).

  V=2,50010(50+0.5V+25)V=2,5005005V2506V=1,750V=291.67

Calculate volume of traffic expected for a 50cents increase.

Substitute 333.33veh/hr for Vnew and 291.67veh/hr for V in Equation (II).

  V=333.33veh/hr( 291.67 veh/ hr 50)=333.33veh/hr5.8334veh/hr=327.49veh/hr

Conclusion:

Therefore, the volume of traffic across the bridge if a toll of 25cents is added is 291.67veh/hr and for 50cents increase is 327.49veh/hr.

To determine

(c)

The volume of traffic across the bridge.

Expert Solution
Check Mark

Answer to Problem 3P

The volume of traffic across the bridge is 666.67veh/hr.

Explanation of Solution

Given:

The total cost to travel across bridge including toll is expressed as,

  C=50+0.2V

Calculations:

Calculate volume of traffic across the bridge.

Substitute (50+0.2V) for C in equation (II).

  V=2,50010(50+0.2V)V=2,5005002V3V=2,000V=666.67

Conclusion:

Therefore, the volume of traffic across the bridge is 666.67veh/hr.

To determine

(d)

The toll to yield the highest revenue for demand and supply function and the associated demand and revenue.

Expert Solution
Check Mark

Answer to Problem 3P

The toll which yield the highest revenue for demand and supply function is $1.00, associated demand is 166.67veh/hr and revenue. $16,666,67 per hour.

Explanation of Solution

Concept used:

Write the expression to calculate the revenue generated.

  R=V×T ....... (III)

Here, R is the revenue and T is the toll.

Calculations:

Assume the toll rate as T to yield highest revenue.

The new cost of the cost of travel across bridge is,

  C=50+0.5V+T

Substitute (50+0.5V+T) for C in Equation (II).

  V=2,50010(50+0.5V+T)V=2,5005005V10T6V=2,00010TV=2,00010T6 ....... (IV)

Substitute (2,00010T6) for V in Equation (III).

  R=( 2,00010T6)×T=2,000T10T26 ....... (V)

From the above equation, the toll which would yield the maximum revenue is 100 cents or $1.00.

Substitute 100 for T in Equation (V).

  R=2,000( 100)10 ( 100 )26=2,00,0001,00,0006=1,00,0006=16,666,67

Calculate the demand for travel across the bridge for maximum revenue.

Substitute 100 for T in equation (IV).

  V=2,00010( 100)6=2,0001,0006=1,0006=166.67

Conclusion:

Therefore, the toll which yield the highest revenue for demand and supply function is $1.00, associated demand is 166.67veh/hr and revenue. $16,666,67 per hour.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Part 3: Problem-Solving. Solve the following problems. Show all calculations. 1. A retaining wall 5.80m high supports soil that has the following properties: Unit weight = 17.3 kN/m³ Angle of internal friction = 26 deg. Cohesion = 14.5 kPa a) Calculate the normal pressure acting at the back of the wall assuming no tensile crack occurs in the soil. b) Find the location of the tensile crack measured from the surface of horizontal backfill. c) Determine the active pressure acting on the wall in tensile crack occurs in the soil. 2. The soil material is supported by a retaining wall to a height of 6m. The unit weight of the soil is 16 kN/m³ and the angle of internal friction is 29 deg. Assume the soil is cohesionless. a) Determine the earth pressure on the wall. b) Find the total active pressure if surcharge of 14 kPa is applied on the surface of horizontal backfill. c) Locate the position of the total pressure from the bottom.
Question 3 (20 points): The traffic volume on a 2-lane highway is 1600 veh/hr in each direction Page 3 of 6 with a density of 20 veh/mi. A large dump truck enters the traffic stream from an adjacent construction site at 20 mph and carries on this way for 2 miles before turning off to the dump site. Because flow is so high in the opposite direction, no one can pass the truck. As a result, traffic back up behind the truck at four times the density (i.e., 4x20 = 80 veh/mi) at a volume of 1000 veh/hr. How many vehicles get caught in the traffic congestion before the truck exits the highway?
How can construction project managers find a balance between speeding up schedules and the risks of making more mistakes and needing rework, especially when using methods like fast tracking?
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Text book image
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning