Principles of Highway Engineering and Traffic Analysi (NEW!!)
6th Edition
ISBN: 9781119305026
Author: Fred L. Mannering, Scott S. Washburn
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 38P
To determine
The theoretical stopping distance of a truck on a level grade.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A car is traveling at 76 mi/hr down a 3% grade on poor, wet pavement. The car's braking efficiency is 90%. The brakes were applied 320 ft before impacting an object. The car had an antilock braking system, but the system failed 200ft after the brakes had been applied (wheels locked). What speed was the car traveling at just before it impacted the object? (Assume theoretical stopping distance, ignore air resistance, and let Frl=0.015)
The rated speed of a highway curve of 300-ft radius is 40 mph. If the coefficient of friction between the tires and the road is 0.60, what is the maximum speed at which a car can round the curve without skidding?
Q-A vehicle is moving on a road of grade +4% at a speed of 20 m/s. Consider the coefficient of
rolling friction as 0.46 and acceleration due to gravity as 10 m/s2. On applying brakes to reach a
speed of 10 m/s, find the required braking distance along the horizontal.
Chapter 2 Solutions
Principles of Highway Engineering and Traffic Analysi (NEW!!)
Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10P
Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A rear-wheel-drive 2800-lb drag race car has a 170-inch wheelbase and a center of gravity 20 inches above the pavement and 140 inches behind the front axle. The owners wish to achieve an initial acceleration from rest of 22 ft/s 2 on a level paved surface. What is the minimum coefficient of road adhesion (in %) needed to achieve this acceleration? (Assume y m = 1.00.)arrow_forwardcompute the braking distance for a car moving at an initial velocity of 80 kph and a final velocity of 60 kph. slope of roadway is +6% the coefficient of friction between road pavement and tries is 0.17, and the perception time is 3/4 seconds.arrow_forwardCompute the braking distance of a car traveling at 50 kph in a horizontal surface and then brought to rest after the application of the brakes if the average skid resistance is 0.55arrow_forward
- What is the safe maximum speed without tipping or skidding for a 13,200 N automobile running around a flat curve of 80 m radius? Its center of gravity is 0.60 m above the road surface and the wheel tread is 1.5 m, and f = 0.50.arrow_forwardI need an answer asap. subject: highway engineeringarrow_forward2-A motorist travelling at 100 km/h on a highway needs to take the next exit, which has a speed limit of 50 km/h. The section of the roadway before the ramp entry has a downgrade of 3% and coefficient of friction f is 0.35. In order to enter the ramp at the maximum allowable speed limit, find the braking distance (expressed in m) from the exit ramp.arrow_forward
- (1) The rated speed of a highway curve of 100m radius is 65kph. If the coefficient of friction between the tires and the road is 0.60, what is the maximum speed at which a car can maneuver the curve without skidding?arrow_forwarda truck was travelling uphill at 50kph. the brakes are suddenly applied and the truck stopped in a distance of 16.1m. if the coefficient of friction between the tires and the road surface is 0.4, what is the grade of the road?arrow_forwardProblem 4 The rated speed of a highway curve of 80 m radius is 30 mph. If the coefficient of friction between the tires and the road is 0.65, what is the maximum speed at which a car can round the curve without skidding?arrow_forward
- Question An engineer has designed a road with a curve of radius 12 m. The material of the road offers a maximum coefficient of friction of 0.3. What should be the maximum permissible speed limit on this road? C 0 7 m/s 8 m/s 6 m/s 5 m/sarrow_forwardProblem 27: A highway curve has a super elevation of 7°. Find the radius of the curve so that there will be no lateral pressure between the tires and the roadway at a speed of 40 mph?arrow_forwardA car is traveling at a speed of 100 ft/s which accelerates 12 ft/s2. The perception reaction time for the driver is 2.40 s. If the maximum grade of the road is -3.7%, compute the following: a. Braking distance in meters b. Lag distance in metersarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning