Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 34Q
To determine
(a)
The approximate month of the year when the image was taken.
To determine
(b)
Whether the Earth was relatively close to the Sun or relatively distant from the Sun when the photograph was taken.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For an entire year, you carefully plot and track the sun's position relative to the background stars (i.e., the celestial sphere). Which of the following is an accurate description of what you observe for the sun's annual drift relative to the celestial sphere?
Select one:
a.
the sun appears to shift only north or south, with no apparent drift east or west
b.
each day, the sun appears to drift primarily from east to west
c.
each day, the sun appears to drift primarily from west to east
d.
the sun does not appear to drift at all relative to the background stars, as defined by our 24 hour day
Assuming that the orbital period of Mars is 687 days, and that the first day of the Martian winter in its Northern Hemisphere is December 21 (Earth date), when will the vernal equinox, summer solstice and autumnal equinox be (according to Earth’s calendar)? Explain your reasoning clearly.
Use the figure below to answer the following question. In this Earth-Sun system drawing we have indicated the direction of both the daily
rotation of Earth about its own axis and its annual orbit about the Sun.
Imagine you are the observer shown on Earth in the northern hemisphere. Seven months AFTER the time shown, which constellation will be
highest in the sky at midnight?
To North
Star
Pisces
Aquarius
Capricornus
Aries
1 day
Sagittarius
Scorpius
Taurus
365 days
Libra
Gemini
Virgo
Cancer
Leo
A. Capricornus
B. Aries
C. Libra
D. Gemini
O E. Sagittarius
Chapter 2 Solutions
Universe: Stars And Galaxies
Ch. 2 - Prob. 1QCh. 2 - Prob. 2QCh. 2 - Prob. 3QCh. 2 - Prob. 4QCh. 2 - Prob. 5QCh. 2 - Prob. 6QCh. 2 - Prob. 7QCh. 2 - Prob. 8QCh. 2 - Prob. 9QCh. 2 - Prob. 10Q
Ch. 2 - Prob. 11QCh. 2 - Prob. 12QCh. 2 - Prob. 13QCh. 2 - Prob. 14QCh. 2 - Prob. 15QCh. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Prob. 18QCh. 2 - Prob. 19QCh. 2 - Prob. 20QCh. 2 - Prob. 21QCh. 2 - Prob. 22QCh. 2 - Prob. 23QCh. 2 - Prob. 24QCh. 2 - Prob. 25QCh. 2 - Prob. 26QCh. 2 - Prob. 27QCh. 2 - Prob. 28QCh. 2 - Prob. 29QCh. 2 - Prob. 30QCh. 2 - Prob. 31QCh. 2 - Prob. 32QCh. 2 - Prob. 33QCh. 2 - Prob. 34QCh. 2 - Prob. 35QCh. 2 - Prob. 36QCh. 2 - Prob. 37QCh. 2 - Prob. 38QCh. 2 - Prob. 39QCh. 2 - Prob. 40QCh. 2 - Prob. 41QCh. 2 - Prob. 42QCh. 2 - Prob. 43QCh. 2 - Prob. 44QCh. 2 - Prob. 45QCh. 2 - Prob. 46QCh. 2 - Prob. 47QCh. 2 - Prob. 48QCh. 2 - Prob. 49QCh. 2 - Prob. 50QCh. 2 - Prob. 51QCh. 2 - Prob. 52QCh. 2 - Prob. 53QCh. 2 - Prob. 54QCh. 2 - Prob. 55QCh. 2 - Prob. 56QCh. 2 - Prob. 57QCh. 2 - Prob. 58QCh. 2 - Prob. 59QCh. 2 - Prob. 60QCh. 2 - Prob. 61Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a calendar based entirely on the day and the month (the Moon’s period from full phase to full phase). How many days are there in a month? Can you figure out a scheme analogous to leap year to make this calendar work?arrow_forwardWhat are advantages and disadvantages of apparent solar time? How is the situation improved by introducing mean solar time and standard time?arrow_forwardTo take the photos that are combined on the opening page of this chapter, was the photographer located on the day, or night, side of Earth? Was the photographer in Earths umbra, penumbra, or both?arrow_forward
- Consider a person in the United States who sees the first-quarter phase of the Moon. (a) Which side of the Moon is illuminated, east or west? (b) What phase does an observer in Australia see at the same time, and which side is bright?arrow_forwardEAn astronaut arrives on the planet Oceania and climbs to the top of a cliff overlooking the sea. The astronaut's eye is 100 m above the sea level and he observes that the horizon in all directions appears to be at angle of 5 mrad below the local horizontal. What is the radius of the planet Oceania at sea level? How far away is the horizon from the astronaut? 6000 km and 50 km 3600 km and 20 km 2000 km and 40 km 8000 km and 40 kmarrow_forwardUse the ellipse tool to draw Earth’s orbit (e = 0.02, a = 1 AU). What are the closest and farthest distances of Earth from the Sun? Closest to the Sun (perihelion) à __0___ AU Farthest from the Sun (aphelion) à __3.96___ AU How do these distances compare?arrow_forward
- I am trying to plot the ground tracks of an orbit. But I am having a problem with finding the longitude. The equation for the longitude is shown in the image. Is the Theta GMST initially zero because the greenwich meridian points to the Aries point (x-axis). How do you calculate alpha or vernal equinox? I saw a formula for alpha which is alpha = arctan(ry/rx), but the formula was for Right Ascension angle. Is the right ascension angle the same as vernal equinox. If not, then what is the formula for vernal equinox.arrow_forwardWhat would be the distance to the nearest star, Alpha Centauri (4.4 light-years away). (Hint: Find the distance to Alpha Centauri in units of AU.) Express your answer to two significant figures and include the appropriate units.arrow_forwardBased on what you've learn on the impact of the Earth-Sun distance on the seasons, what can you say about the the cause of the seasons? (Give ALL correct answers, i.e., B, AC, BCD...)A) Earth's axis is tilted an an angle of 23.5 degrees compared to a line perpendicular (straight up and down) to its orbit, which is the main cause for the seasons.B) Earth's speed varies in its orbit around the Sun, giving us summer when Earth is moving fastest and winter when Earth is moving slowest.C) The Earth-Sun distance play a major role in creating seasons on Earth.D) The tilt of Earth's axis causes the Northern Hemisphere to be closer to the Sun than the southern hemisphere in summer, and vice versa in winter. E) The tilt of Earth's axis causes different portions of the Earth to receive more or less direct sunlight at different times of year.F) Earth's Northern Hemisphere is always tilted away from the Sun at an angle of 23.5 degrees.G) Earth's Northern Hemisphere is always tilted toward the Sun…arrow_forward
- Use the figure below to answer the following question. In this Earth-Sun system drawing we have indicated the direction of both the daily rotation of Earth about its own axis and its annual orbit about the Sun. Imagine you are the observer shown on Earth in the northern hemisphere. Three months after the time shown, what constellation is highest in the sky at midnight? To North Star Pisces Aquarius Capricornus hw 2 Aries 1 day Sagittarius / Scorpius Taurus 365 days Libra Gemini Virgo Cancer Leo O A. Scorpius B. Aquarius O C. Virgo D. Leo E. Cancerarrow_forwardOn February 28, 2010, Earth was equidistant from the spacecraft Dawn and the Sun, forming an isosceles triangle. The distance from Earth to Dawn and Earth to the Sun was 0.99 AU (astronomical units). The distance from Dawn to the Sun was 1.84 AU. a) Draw a diagram to show Dawn, Earth, and the Sun. b) Determine the angle between the sight lines from Earth to Dawn and the Sun.arrow_forwardThinking about the Scale of the Solar System As we discussed, the radius of the Earth is approximately 6370 km. The Sun, on the other hand, is approximately 700,000 km in radius and located, on average, one astronomical unit (1 au=1.5x108 km) from the Earth. Imagine that you stand near Mansueto Library, at the corner of 57th and Ellis. You hold a standard desk globe, which has a diameter of 12 inches, and you want to build a model of the Sun, Earth, and their separation that keeps all sizes and lengths in proportion to one another. a) How big would the Sun be in this scale model? Give your answer in feet and meters. b) The nearest star to the Solar System outside of the Sun is Proxima Centauri, which is approximately 4.2 light years away (a light year is the distance light travels in one year, or approximately 9.5x1012 km). Given the scale model outlined above, how far would a model Proxima Centauri be placed from you? Give your answer in miles and km.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY