
Concept explainers
(a)
The acceleration of a thrown base-ball.

Answer to Problem 31QAP
The acceleration of the thrown baseball =
where
d = the displacement of the ball from behind the body of the pitcher to the point where it is released (Refer the picture below)
Explanation of Solution
Given:
During this calculation it is assumed that the baseball undergoes constant linear acceleration. Also, it is assumed that the linear velocity of the baseball when it is thrown is
Formula used:
Calculation:
During the throwing process the baseball is at rest in pitcher's hand. This means that that the initial velocity of the baseball is 0 ms-1. Assume that the pitcher releases the baseball at a linear velocity of
Also, the difference between the two positions is equal to d. Hence substituting to the above equation;
Conclusion:
The acceleration of the thrown baseball =
Where
d = the displacement of the ball from behind the body of the pitcher to the point where it is released
(b)
The acceleration of a kicked soccer ball.

Answer to Problem 31QAP
The acceleration of the thrown baseball = - (
where
d = the displacement of the soccer ball
Explanation of Solution
Given:
During this calculation it is assumed that the soccer ball undergoes constant linear acceleration. Also it is assumed that the linear velocity of the baseball when it is thrown is
Formula used:
Calculation:
It is assumed that player A kicks the soccer ball with a liner velocity and the player B catches the soccer ball. When player B catches the soccer ball the velocity of the ball would be zero. It is assumed that the ball travels a distance of d during this process.
Note in this case the final velocity is zero hence the sign of the acceleration is negative.
Conclusion:
The acceleration of the thrown baseball = - (
where
d = the displacement of the soccer ball
Want to see more full solutions like this?
Chapter 2 Solutions
FlipIt for College Physics (Algebra Version - Six Months Access)
- Pls help ASAParrow_forwardPls help ASAParrow_forward12. A motorboat traveling 6 m/s, West encounters a water current travelling 3.5 m/s, South. a) Draw a vector diagram showing the resultant velocity, then determine the resultant velocity of the motorboat. b) If the width of the river is 112 m wide, then how much time does it take for the boat to travel shore to shore? c) What distance downstream does the boat reach the opposite shore?arrow_forward
- Lake Erie contains roughly 4.00⋅10114.00⋅1011 m3 of water. Assume the density of this water is 1000. kg/m3 and the specific heat of water is 4186 J/kg˚C. It takes 2.31x10^19 J of energy to raise the temperature of that volume of water from 12.0 °C to 25.8 ˚C. An electric power plant can produce about 1110 MW. How many years would it take to supply this amount of energy by using the 1110 MW from an electric power plant?arrow_forwardPls help ASAParrow_forwardPls help ASAParrow_forward
- m m $2° 15. A truck is stopped at a red light. Once the light turns green, the truck accelerates forward at 1.75- that same instant, a car moving with a constant speed of 50 — passes the truck. a) How many seconds will it take for the truck to catch up to the car? S b) How many metres will the truck travel before it catches up to the car? Atarrow_forwardPls help ASAParrow_forwardI need help adding more information to my study guide. This is subject is physics My topic : Emission Spectrum Target Material I need information on this topic but make it as study guide form and make 5 questions and include the answers.arrow_forward
- An electron and a proton are each moving at 755 km/s in perpendicular paths as shown in (Figure 1). Find the magnitude of the total magnetic force that the electron exerts on the proton. Find the magnitude of the total electrical force that the electron exerts on the proton.arrow_forwardTwo long, parallel wires hang by 4.00-cm-long cords from a common axis (see the figure (Figure 1)). The wires have a mass per unit length of 1.85×10−2 kg/m and carry the same current in opposite directions. What is the current in each wire if the cords hang at an angle of 6.00 ∘ with the vertical? Please explain all steps.arrow_forwardThe capacitor in (Figure 1) is initially uncharged. The switch is closed at t=0. What is the final charge on the capacitor? Please explain exactly what you doarrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





