(a)
Interpretation:
The formulas for
Concept introduction:
The general rules for writing the common names of compounds of metals that form more than one ion are:
1) The root name of the metal is followed by the suffix
2)The root name of the metal is followed by the suffix
For writing the systematic name of the compound, a roman numeral within parentheses is written immediately after the name of the metal ion to indicate the charge on it.
(b)
Interpretation:
The formulas for lithium nitride, lithium nitrite, and lithium nitrate are to be determined.
Concept introduction:
The general rules for naming ionic compounds are as follows:
1) In ionic compounds, the cations are named before the anions.
2) In binary ionic compounds, the name of the cation is the same as the name of the metal. The name of the anion includes the root name of the non-metal and a suffix
3) In polyatomic ions in which a non-metal is bonded to one or more oxygen atoms. In two oxoanions in the family, the ion with fewer oxygen atoms has the non-metal root name and a suffix
(c)
Interpretation:
The formulas for strontium hydride and strontium hydroxide are to be determined.
Concept introduction:
The general rules for naming ionic compounds are as follows:
1) In ionic compounds, the cations are named before the anions.
2) In binary ionic compounds, the name of the cation is the same as the name of the metal. The name of the anion includes the root name of the non-metal and a suffix
(d)
Interpretation:
The formulas for magnesium oxide and
Concept introduction:
The general rules for writing the common names of compounds of metals that form more than one ion are:
1) The root name of the metal is followed by the suffix
2)The root name of the metal is followed by the suffix
For writing the systematic name of the compound, a roman numeral within parentheses is written immediately after the name of the metal ion to indicate the charge on it.

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
CHEMISTRY THE MOLECULAR NATURE OF MATTER
- All of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forward
- Name the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forwardI would like my graphs checked please. Do they look right? Do I have iodine and persulfate on the right axis ?arrow_forward
- Reaction Fill-ins Part 2! Predict the product(s) OR starting material of the following reactions. Remember, Hydride shifts are possible if/when a more stable carbocation can exist (depending on reaction mechanism)! Put your answers in the indicated boxes d. d. ง HCIarrow_forwardA cylinder contains 12 L of water vapour at 150˚C and 5 atm. The temperature of the water vapour is raised to 175˚C, and the volume of the cylinder is reduced to 8.5 L. What is the final pressure of the gas in atmospheres? assume that the gas is idealarrow_forwardOn the next page is an LC separation of the parabens found in baby wash. Parabens are suspected in a link to breast cancer therefore an accurate way to quantitate them is desired. a. In the chromatogram, estimate k' for ethyl paraben. Clearly indicate what values you used for all the terms in your calculation. b. Is this a "good" value for a capacity factor? Explain. c. What is the resolution between n-Propyl paraben and n-Butyl paraben? Again, indicate clearly what values you used in your calculation. MAU | Methyl paraben 40 20 0 -2 Ethyl paraben n-Propyl paraben n-Butyl paraben App ID 22925 6 8 minarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





