
Concept explainers
(a)
Interpretation: The density of the electrons in the atom to be calculated.
Concept Introduction:
Atoms: Atoms consist of tiny particles called protons, neutrons and electrons. Proton and neutrons are present in the nucleus and the electron resides around the nucleus. The protons number will be same as the electrons count in the atom.
The element symbol : AZX,where, A (mass number) = no.of protons + no.of neutrons. Z (atomic number) = no. of protons. (electrons = protons).
Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.
The stability of any element is determined by the difference between coulombic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.
(a)

Answer to Problem 2.82QP
The atom consists of concentrated mass called nucleus at the center and surrounded by the electrons.
Explanation of Solution
Every atom contains a nucleus in which all of its positive charge and most of its mass are concentrated is proven by the experiment.
Experiment: Allowing alpha-particles (positively charged) to bombard with the gold foil, expected all the rays to pass through. In contrast, the rays are deflected with angles is observed.
Rutherford’s Experiment evidences about:
- 1. The atom is mostly consist of empty space (due to most of the rays went through the foil).
- 2. Very solid particles; presence of nucleus is revealed by the rays were bounced back.
- 3. The nucleus consist of positive charge is confirmed by the rays deflected at an angle. The similar charges have no attraction and are deflected away.
(b)
Interpretation: The density of the electrons in the atom to be calculated.
Concept Introduction:
Atoms: Atoms consist of tiny particles called protons, neutrons and electrons. Proton and neutrons are present in the nucleus and the electron resides around the nucleus. The protons number will be same as the electrons count in the atom.
The element symbol : AZX,where, A (mass number) = no.of protons + no.of neutrons. Z (atomic number) = no. of protons. (electrons = protons).
Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.
The stability of any element is determined by the difference between coulombic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.
(b)

Answer to Problem 2.82QP
The density of the electrons is 3.72×10-4g/cm3.
Explanation of Solution
Calculate the density of the nucleus.
Consider, the nucleus is spherical, and the volume of the nucleus is:
V = 43πr3 = 43π (3.04×10-13cm)3= 1.177×10-37cm3.From which the density of nucleus is calculated by :d = mV = 3.82×10-23g1.177×10-37cm3 = 3.25×1014g/cm3.
In order to calculate the density, the value of volume is must; which is calculated as shown above by considering the nucleus is spherical.
Calculate the density of space occupied by electrons in sodium atom.
To be required: The mass of 11 electrons and the volume occupied by 11 electrons.
The mass of 11 electrons:11electrons × 9.1094×10-28 g1 electron = 1.00203 × 10-26 g
The volume occupied by the electron is obtained by the differences between the volume of the atom and volume of nucleus.
The volume of atom is:
Conversion of pm into cm:_186 pm × 1×10-12 g1 pm ×1cm1×10-2m = 1.86 × 10-8 cm.Vatom = 43πr3 = 43 π (1.86×10-8cm)3 = 2.695 × 10-23 cm3Velectrons = Vatom- Vnucleus= (2.695 × 10-23 cm3) - (1.177 × 10-37 cm3) = 2.695 × 10-23 cm3.The volume occupied by the nucleus is insignificant compared to the space occupied by the atoms.
Hence, the required terms are sufficient to calculate the density of the electrons:
d = mV = 1.00203×10-26 g2.695×10-23 cm3 = 3.72×10-4g/cm3
The density of the electrons is 3.72×10-4g/cm3.
Want to see more full solutions like this?
Chapter 2 Solutions
Chemistry Atoms First, Second Edition
- Please help me Please use https://app.molview.com/ to draw this. I tried, but I couldn't figure out how to do it.arrow_forwardPropose a synthesis of 1-butanamine from the following: (a) a chloroalkane of three carbons (b) a chloroalkane of four carbonsarrow_forwardSelect the stronger base from each pair of compounds. (a) H₂CNH₂ or EtzN (b) CI or NH2 NH2 (c) .Q or EtzN (d) or (e) N or (f) H or Harrow_forward
- 4. Provide a clear arrow-pushing mechanism for each of the following reactions. Do not skip proton transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted without ambiguity. a. 2. 1. LDA 3. H3O+ HOarrow_forwardb. H3C CH3 H3O+ ✓ H OHarrow_forward2. Provide reagents/conditions to accomplish the following syntheses. More than one step is required in some cases. a. CH3arrow_forward
- Identify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forwardIdentify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forwardInstructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning





