(a)
The total orbital momentum of the Sun-Jupiter System.
(a)

Answer to Problem 2.6P
The momentum of the combined system is
Explanation of Solution
Write the expression for the reduced mass of the system
Here,
Write the expression for the total
Here,
Conclusion:
Substitute
Substitute
Thus, the momentum of the combined system is
(b)
The contribution of the Sun in the total orbital angular momentum.
(b)

Answer to Problem 2.6P
The contribution of the Sun in the angular momentum is
Explanation of Solution
Write the expression for the distance of Sun from the centre of mass
Here,
Write the expression for the Sun’s orbital speed.
Here,
Write the expression for the momentum of orbital motion of Sun
Here,
Conclusion:
Substitute
Substitute
Substitute
Thus, the contribution of the Sun in the angular momentum is
(c)
The contribution of the Jupiter in the orbital angular momentum and the difference with calculation of part (a) and part(b).
(c)

Answer to Problem 2.6P
The contribution of the Jupiter in the angular momentum is
Explanation of Solution
Write the expression for the distance of Jupiter from the centre of mass
Here,
Write the expression for the Jupiter’s orbital speed.
Here,
Write the expression for the momentum of orbital motion of Jupiter
Here,
Write the expression for the difference in momentum of part (a) and part (b).
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Thus, the contribution of the Jupiter in the angular momentum is
(d)
The angular momentum of Sun and Jupiter by using moment of inertia.
(d)

Answer to Problem 2.6P
The angular momentum by using mass moment of inertia, for the Sun is
Explanation of Solution
Write the expression for the angular momentum of the Sun
Here,
Write the expression for the angular momentum of the Jupiter.
Here,
Conclusion:
Substitute
Substitute
Thus, the angular momentum by using mass moment of inertia, for the Sun is
(e)
The part which is making largest contribution to the angular momentum of the Sun-Jupiter combines system.
(e)

Answer to Problem 2.6P
The Sun is making largest contribution to the angular momentum of the Sun-Jupiter combines system.
Explanation of Solution
From part (d) and part (c) it is clear that Sun has the highest contribution in the angular momentum of the Sun-Jupiter combined system. Since the value of the angular momentum is
Conclusion:
Thus, the Sun is making largest contribution to the angular momentum of the Sun-Jupiter combines system.
Want to see more full solutions like this?
Chapter 2 Solutions
EBK AN INTRODUCTION TO MODERN ASTROPHYS
- From this question and answer can you explain how get (0,0,5) and (5,0,,0) and can you teach me how to solve thisarrow_forwardCan you solve this 2 question and teach me using ( engineer method formula)arrow_forward11. If all three collisions in the figure below are totally inelastic, which brings the car of mass (m) on the left to a halt? I m II III m m ע ע ע brick wall 0.5v 2m 2v 0.5m A. I B. II C. III D. I and II E. II and III F. I and III G. I, II and III (all of them)arrow_forward
- How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?arrow_forwardYou want to fabricate a soft microfluidic chip like the one below. How would you go about fabricating this chip knowing that you are targeting a channel with a square cross-sectional profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the process to form the inlet and outlet. Square Cross Sectionarrow_forward1. What are the key steps involved in the fabrication of a semiconductor device. 2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer with the pattern below. Describe the process you would use. High Aspect Ratio Trenches Undoped Si Wafer P-doped Si 3. You would like to deposit material within a high aspect ratio trench. What approach would you use and why? 4. A person is setting up a small clean room space to carry out an outreach activity to educate high school students about patterning using photolithography. They obtained a positive photoresist, a used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full resist gets developed, and they are unable to transfer the pattern onto the resist. Help them troubleshoot and find out why pattern of transfer has not been successful. 5. You are given a composite…arrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardAn electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forwardAn ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





