UNIVERSE (LOOSELEAF):STARS+GALAXIES
6th Edition
ISBN: 9781319115043
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 24Q
To determine
Places where the visible stars are circumpolar.
Places where no visible stars are circumpolar.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Review Conceptual Example 3 for information pertinent to this problem. When we look at a particular star, we are seeing it as it was 307 years ago. How far away from us (in meters) is the star? Take a year to be 365.25 days.
Description: If you could see both the Sun and the other stars during the day, this is what the sky would
look like looking south at noon on January 1 for an observer in the northern hemisphere. The Sun would
appear in the sky next to the more distant stars in the constellation Sagittarius, (labeled constellation C).
Also shown are other constellations (named and labeled A, B, D, and E) that will be visible above the
horizon at this time when facing south.
Aquarius
-EAST
B
Capricornus
Horizon
Sagittarius
SOUTH
SUN
D
Scorpius
Libra
E
WEST->>
If you go out to look at the night sky tonight from central Iowa, the North Star (aka Polaris) is located near the North Celestial Pole at an altitude of approximately 42 degrees above the horizon. Why is that the case?
What is the altitude of the celestial equator at its highest point as viewed from this location and how do we calculate that?
Explain the myth behind one of the constellations located near North Celestial Pole and then explain the myth behind another constellation along the ecliptic plane.
Chapter 2 Solutions
UNIVERSE (LOOSELEAF):STARS+GALAXIES
Ch. 2 - Prob. 1QCh. 2 - Prob. 2QCh. 2 - Prob. 3QCh. 2 - Prob. 4QCh. 2 - Prob. 5QCh. 2 - Prob. 6QCh. 2 - Prob. 7QCh. 2 - Prob. 8QCh. 2 - Prob. 9QCh. 2 - Prob. 10Q
Ch. 2 - Prob. 11QCh. 2 - Prob. 12QCh. 2 - Prob. 13QCh. 2 - Prob. 14QCh. 2 - Prob. 15QCh. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Prob. 18QCh. 2 - Prob. 19QCh. 2 - Prob. 20QCh. 2 - Prob. 21QCh. 2 - Prob. 22QCh. 2 - Prob. 23QCh. 2 - Prob. 24QCh. 2 - Prob. 25QCh. 2 - Prob. 26QCh. 2 - Prob. 27QCh. 2 - Prob. 28QCh. 2 - Prob. 29QCh. 2 - Prob. 30QCh. 2 - Prob. 31QCh. 2 - Prob. 32QCh. 2 - Prob. 33QCh. 2 - Prob. 34QCh. 2 - Prob. 35QCh. 2 - Prob. 36QCh. 2 - Prob. 37QCh. 2 - Prob. 38QCh. 2 - Prob. 39QCh. 2 - Prob. 40QCh. 2 - Prob. 41QCh. 2 - Prob. 42QCh. 2 - Prob. 43QCh. 2 - Prob. 44QCh. 2 - Prob. 45QCh. 2 - Prob. 46QCh. 2 - Prob. 47QCh. 2 - Prob. 48QCh. 2 - Prob. 49QCh. 2 - Prob. 50QCh. 2 - Prob. 51QCh. 2 - Prob. 52QCh. 2 - Prob. 53QCh. 2 - Prob. 54QCh. 2 - Prob. 55QCh. 2 - Prob. 56QCh. 2 - Prob. 57QCh. 2 - Prob. 58QCh. 2 - Prob. 59QCh. 2 - Prob. 60QCh. 2 - Prob. 61Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Look at The Sky Around You, item 1a. In the looking south illustration, is Canis Major a circumpolar constellation? Why or why not?arrow_forwardIs the Sun an average star? Why or why not?arrow_forwardPart 3 1. The diameter of the Sun is 1,391,400 km. The diameter of the Moon is 3,474.8 km. Find the ratio, r= Dsa/Dsvan between the sizes. 2. From the point of view of an obs erver on Eanth (consider the Earth as a point-like object), during the eclipse, the Moon covers the Sun exactly. Sketch a picture to illustrate this fact. Use a nuler to get a straight line. Your drawing does not need to be in scale. 3. The Sun is 1 Astronomical Unit (AU) away from the Earth. Find the distance between the Earth and the Moon in AU's using the ratio of similar triangles. Show your work. DEM= AU. Convert this to kilometers. Use 1 AU = 149,600,000 km. DEM = km.arrow_forward
- On Earth, the parallax angle measured for the star Procyon is 0.29 arcseconds. If you were to measure Procyon's parallax angle from Venus, what would the parallax angle be? (Note: Earth's orbital radius is larger than Venus's orbital radius.) A. more than 0.29 arcseconds O B. 0.29 arcseconds O C. less than 0.29 arcseconds D. zero arcseconds (no parallax)arrow_forwardOn Earth, the parallax angle measured for the star Procyon is 0.29 arcseconds. If you were to measure Procyon's parallax angle from Venus, what would the parallax angle be? (Note: Earth's orbital radius is larger than Venus's orbital radius.) A. more than 0.29 arcseconds B. 0.29 arcseconds C. less than 0.29 arcseconds D.zero arcseconds (no parallax)arrow_forwardConsidering absolute magnitude M, apparent magnitude m, and distance d. Compute the unknown for each of these stars: a. m = +1.6mag, d = 4.3pc. What is M? b. M = -14.3 mag, m = 10.9 mag. What is d? c. m = -5.6mag, d = 88pc. What is M? d. M = 0.9mag, d = 220pc. What is m?arrow_forward
- Use this interactive simulation of stellar parallax. Change the distance to the star to values given in column 2. Write down the parallax angle in arcsec for each distance. Convert the parallax angle to radians. Calculate the distance. If your calculation is correct, your number in the last column should be similar to the number in column 2 (NOT THE SAME!). 1 AU is 4.85 x 10-6 pc (Don't write units with your answer!) Measured (true) Parallax angle n (in radians) (use 2 significant D (round your answer to 2 figures) Calculated distance Object Parallax angle (in arcsec) Distance from Position "Sun" in pc decimal places) Nearest 0.5 Intermediate 1 Farthest 1.5arrow_forwardAs we discuss in class, the radius of the Earth is approximately 6370 km. Theradius of the Sun, on the other hand, is approximately 700,000 km. The Sun is located,on average, one astronomical unit (1 au) from the Earth. Imagine that you stand near Mansueto Library, at the corner of 57th and Ellis.Mansueto’s dome is 35 feet (10.7 meters) high. Let’s imagine we put a model of theSun inside the dome, such that it just fits — that is, the model Sun’s diameter is 35 feet The nearest star to the Solar System outside of the Sun is Proxima Centauri,which is approximately 4.2 light years away. Given the scale model outlined above,how far would a model Proxima Centauri be placed from you? Give your answer inmiles and kmarrow_forward15: A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. What is the distance to this star? Answer: 37 16: What is the absolute magnitude of this star? Answer:1.8 17: Is this star more or less luminous than the Sun? Answer "M" for More luminous or "L" for Less luminous. (HINT: the absolute magnitude of the Sun is 4.8) Answer: M 18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.) Please answer question #18, #15-17 are correct, the photos provide the work for them.arrow_forward
- Stellar parallax is used as a tool to determine distances to stars. Describe how stellar parallax works. Also discuss the limiting factors in its use and the maximum distance that can be accurately measured using this technique. Do you believe this concept is unique to astronomy or used in other technical disciplines? Provide examples.arrow_forwardWhen we look at a particular star, we are seeing it as it was 371 years ago. How far away from us (in meters) is the star? Take a year to be 365.25 days.arrow_forwardUrsa Minor contains the pole star, Polaris, and the asterism known as the Little Dipper. From most locations in the Northern Hemisphere, all of the stars in Ursa Minor are circumpolar. Does that mean these stars are also above the horizon during the day? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning