A piston having 7.23 g of steam at 110 °C increases its temperature by 35 °C. At the same time, it expands from a volume of 2.00 L to 8.00 L against a constant external pressure of 0.985 atm. Calculate w, q, ΔU, and ΔH for the process.

Interpretation:
A piston having 7.23 g of steam at 110 °C increases its temperature by 35 °C. At the same time, it expands from a volume of 2.00 L to 8.00 L against a constant external pressure of 0.985 atm. For the process w, q, ΔU, and ΔH is to be calculated.
Concept introduction:
Larger collection of atoms and molecules can be handled easily with the concepts of thermodynamics. The terms heat, work, internal energy, and enthalpy can be explained well by macroscopic rules. When an object is moving distance s due to the externally applied force F, then it is called some work has been done on an object.
Therefore, work (w) = F. s
In constant external pressure (Pex), the small amount of work done by the system (dw) to the surroundings with infinitesimal small change of volume (dV) is given by the expression
The decrease of system energy is denoted by the negative sign. Normally, heat is defined as the measurement of thermal energy transfer that can be obtained by the temperature change in an object and is referred by the symbol q. when the heat enters into the system it is getting positive sign and when the heat comes out of the system it obtains negative sign. Notably, the overall energy content of the system is defined as internal energy (ΔU). The internal energy values for an isolated system is zero. since, no heat can enter into the system. Mathematically, internal energy can be written as,
Primarily, most of the processes are carried out at constant pressure, instead of constant volume, thus, a new concept of enthalpy was introduced. Thus, the enthalpy (H) of a system, involving pressure volume work, is given by the expression,
H = U + pV
In a given system, the enthalpy and internal energy are governed by state variables of the system.
Answer to Problem 2.35E
For the mentioned process the values of w, q, ΔU, and ΔH is calculated as follows;
Explanation of Solution
The first law thermodynamics is basically including the three fundamental parameters work, heat and internal energy. Enthalpy and internal energy are referred as state functions.
Given,
From the values of temperature difference of the system, the quantity of heat absorbed by the system q is calculated as = 516 J
Work (w):
Thus, For the process w, q, ΔU, and ΔH is calculated.
Want to see more full solutions like this?
Chapter 2 Solutions
Student Solutions Manual for Ball's Physical Chemistry, 2nd
- Part 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Temporary cross-linked polymer Using: 4% polyvinyl alcohol+ methyl red + 4% sodium boratearrow_forwardcan you please answer both these questions and draw the neccesaryarrow_forwardcan you please give the answer for both these pictures. thankyouarrow_forward
- Part 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) | Bakelite like polymer Using: Resorcinol + NaOH + Formalinarrow_forwardQuestion 19 0/2 pts 3 Details You have a mixture of sodium chloride (NaCl) and potassium chloride (KCl) dissolved in water and want to separate out the Cl- ions by precipitating them out using silver ions (Ag+). The chemical equation for the net ionic reaction of NaCl and KCl with silver nitrate, AgNO3, is shown below. Ag+(aq) + Cl(aq) → AgCl(s) The total mass of the NaCl/KCl mixture is 1.299 g. Adding 50.42 mL of 0.381 M solution precipitates out all of the Cl-. What are the masses of NaCl and KCl in the mixture? Atomic masses: g: Mass of NaCl g: Mass of KCL Ag = 107.868 g mol- 1 Cl = 35.453 g mol- 1 K = 39.098 g mol- N = 14.007 g mol−1 Na = 22.99 g mol−1 0 = 15.999 g mol 1 Question Help: ✓ Message instructor Submit Questionarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Polyester fiber Using a) pthalic anhydride + anhydrous sodium acetate + ethylene glycol B)pthalic anhydride + anhydrous sodium acetate + glycerolarrow_forward
- Identify the missing starting materials/ reagents/ products in the following reactions. Show the stereochemistry clearly in the structures, if any. If there is a major product, draw the structures of the major product with stereochemistry clearly indicated where applicable. Show only the diastereomers (you do not have to draw the pairs of enantiomers). If you believe that multiple products are formed in approximately equal amounts (hence neither is the major product), draw the structures of the products, and show the detailed mechanism of these reactions to justify the formation of the multiple products. If you believe no product is formed, explain why briefly. (6 mark for each, except f and g, which are 10 mark each)arrow_forward3. What starting material would you use to synthesize 3-hydroxypentanoic acid using a NaBH4 reduction?arrow_forward1. Give stereochemical (Fischer projection) formulas for all (but no extras) the stereoisomers that could theoretically form during the reduction of a. the carbonyl group of 2-methyl-3--pentanone b. both carbonyl groups of 2,4-pentanedione (careful!) 2. Predict the products of the reduction of O=CCH2CH2CH2C=O with a. LiAlH4 b. NaBH4 CH3 OHarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





