FUND OF ENG THERMODYN(LLF)+WP NEXT GEN
9th Edition
ISBN: 9781119840602
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.28P
To determine
The instantaneous electric power is provided to the heater, the total amount of energy supplied to the heater by electrical work (in kWh), and the cost of operation for one day.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A construction crane weighing 12,000 lbf fell from a height of 500 ft to the street below during a severe storm. For g = 32.05 ft/s²,
determine the mass, in lb, and the change in gravitational potential energy of the crane, in ft-lbf.
A heat engine has a thermal efficiency of 40 percent and it produces 600 kJ of work. What is the heat input to the heat engine, in MJ? Report your answer to one decimal place.
Three-tenths kilogram of a gas
is contained within a
piston-cylinder assembly. The
gas undergoes a process for
which the pressure-volume
relationship is PV^1.6 =
constant. The initial pressure is
73 psi, the initial volume is 10
ft3, and the final volume is 15
ft3. The change in specific
internal energy of the gas in the
process is 35 kJ/kg. There are
no significant changes in
kinetic or potential energy.
Determine the net heat transfer
for the process, in kJ.
Chapter 2 Solutions
FUND OF ENG THERMODYN(LLF)+WP NEXT GEN
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- At a given instant, a closed system is loosing 0.21 kW of heat to the outside atmosphere. A battery inside the system keeps it warm by powering a 40 W internal heating lamp. A shaft transfers 0.21 kW of work into the system at the same time. Part A Determine the rate of external work transfer, the rate of heat transfer, and dE/dt of the system. Express your answers, separated by commas, to two significant figures, if necessary. Vo AEO It vec ? Wert = Q kW, kW, kWarrow_forwardDetermine the power output, in hp, of an animal pulling a plow at a speed of 3 kph. The draft is 75 kg.arrow_forwardA construction crane weighing 8,000 lbf fell from a height of 400 ft to the street below during a severe storm. For g = 32.05 ft/s², determine the mass, in lb, and the change in gravitational potential energy of the crane, in ft·lbf. Part A Determine the mass, in lb. m = i lbarrow_forward
- A closed system of mass of 2 kg undergoes a process during which there is energy transfer by work from the system of 75J, and the system velocity reduces from 10 m/s to 5 m/s. The specific internal energy decreases by 50 J/kg. Determine the heat transfer for the process, in J.arrow_forwardThree-tenths kilogram of a gas is contained within a piston-cylinder assembly. The gas undergoes a process for which the pressure-volume relationship is PVA1.6 = constant. The initial pressure is 73 psi, the initial volume is 10 ft3, and the final volume is 15 ft3. The change in specific internal energy of the gas in the process is 35 kJ/kg. There are no significant changes in kinetic or potential energy. Determine the net heat transfer for the process, in kJ. Select one: а. 11.66 b. -4.4 С. 40.8 d. 61.8arrow_forwardB) During a cold winter night in Boston, a family uses a 1500 W electric space heater with an applied voltage of 110 V to keep warm for 8 hours. Determine the electrical current drawn by the heater, in Amps, and total amount of energy supplied to the heater by electrical work, in kW.h. If electric power is valued at $0.08/ kW-h, determine the cost of operation for the night.arrow_forward
- A heat pump cycle delivers energy by heat transfer to a dwelling at a rate of 40,000 Btu/h. The coefficient of performance of the cycle is 3. (a) Determine the power input to the cycle, in hp. (b) Evaluating electricity at $0.085 per kW-h, determine the cost of electricity during the heating season when the heat pump operates for 2000 hours. W cycle Cost = $ hparrow_forwardA gas in a piston–cylinder assembly undergoes a compression process for which the relation between pressure and volume is given by pVn = constant. The initial volume is 0.2 m3, the final volume is 0.04 m3, and the final pressure is 2 bar.For n = 1.4, determine the initial pressure, in bar, and the work for the process, in kJ.arrow_forwardA gas in a piston–cylinder assembly undergoes a process for which the relationship between pressure and volume is pVn = constant. The initial pressure is 1 bar, the initial volume is 0.10 m3, and the final pressure is 9 bar. The value of the polytropic exponent is n = 1.5. Determine the final volume, in m3, and the work for the process, in kJ.arrow_forward
- A construction crane weighing 16,000 lbf fell from a height of 500 ft to the street below during a severe storm. For g = 32.05 ft/s², determine the mass, in lb, and the change in gravitational potential energy of the crane, in ft·lbf. Part A Determine the mass, in lb. m = Your answer is correct. Hint Part B 16000 * Your answer is incorrect. APE = Determine the change in gravitational potential energy of the crane, in ft-lbf. lb i 8e^6 ft·lbf Attempts: 1 of 4 usedarrow_forwardA compressor requires a mechanical work rate equal to 77 kW for increasing the pressure of 40 kg/min of air from 178 kPa to 685 kPa. The inlet temperature of air is 332 K and thermal dissipation towards the environment amounts to 6 kW. Take the air specific heat constant cp=1.1 kJ/(kg K). If kinetic and potential energy differences can be neglected, determine the air temperature at outlet in K to 1 decimal place.arrow_forwardA closed system consisting of 10 lb of air undergoes a polytropic process from p₁ = 80 lbf/in². v₁ =4 ft3/lb to a final state where p2 = 20 lbf/in², v₂ = 11 ft³/lb. Determine the polytropic exponent, n, and the amount of energy transfer by work, in Btu, for the process. Determine the polytropic exponent, n, for the process. n=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License