PRINT COMPANION ENGINEER THERMO
9th Edition
ISBN: 9781119778011
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.23P
To determine
The work for each process, in kJ.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please can you solve this question in thermodynamics
A gas contained within a piston-cylinder assembly undergoes three processes in series:
Process 1-2: Constant volume from p₁ = 1 bar, V₁ = 4 m³ to state 2, where p2 = 2 bar.
Process 2-3: Compression to V3 = 2 m³, during which the pressure-volume relationship is pV = constant.
Process 3-4: Constant pressure to state 4, where V4 = 1 m³.
Sketch the processes in series p-V coordinates and evaluate the work for each process, in kJ.
Hint: Draw all the processes neatly on P-V diagram. Denote the states 1-4. Do not forget to add arrows.
Initially contains Air:
P1 = 30 lbf/in^2
T1 = 540 °F
V1 = 4 ft^3
Second phase of process involving Air to a final state:
P2 = 20 lbf/in^2
V2 = 4.5 ft^3
Wheel transfers energy TO the air by WORK at 1 Btu.
Energy transfers TO the air by HEAT at 12 Btu.
Ideal Gas Behavior.
Determine energy transfer by work based on the air to the piston in
Btu.
Wpw
=-1 Btu
Ima
Q = -12 Btu
Air
Wpist
= ?
Initially, p₁ = 30 lbf/in.², T₁ = 540°F, V₁ = 4 ft³.
Finally, p2 = 20 lbf/in.², V₂ = 4.5 ft³.
Chapter 2 Solutions
PRINT COMPANION ENGINEER THERMO
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1Kg of water contained in a piston-cylinder assembly undergoes five processes in series as follows: Process 1-2: constant pressure heating at 10 bar from saturated vapor Process 2-3: constant volume cooling to P; = 5 bar and T; = 180°C Process 3-4: constant pressure compression to x=0.45 Process 4-5: constant volume heating to Ps = P1 Process 5-1: constant pressure heating to saturated vapor a. Sketch the above processes on both T-v and P-v diagrams b. Find quality at point 5, and the work done in each processarrow_forward2.15 Air undergoes two processes in series! Process 1-2: polytropic compression, with n = 1.3, from pi= 100 kPa. v₁ = 0.04 m³/kg to 1/2 = 0.02 m³/kg Process 2-3: constant-pressure process to 3 = V₁ Sketch the processes on a p-v diagram and determine the total work per unit mass of air, in kJ/kg.arrow_forward3) From an initial state where the pressure is p,, the temperature is T, and the volume is V1, water vapor contained in a piston-cylinder assembly undergoes each of the following processes: Process 1-2: Constant-temperature to p, = 2p, Process 1-3: Constant volume to p3 = 2p1 Process 1-4: Constant pressure to V4 = 2V1 Process 1-5: Constant temperature to V; = 2V, %3D On a p-V diagram, sketch each process, identify the work by an area on the diagram, and indicate whether the work is done by, or on, the water vapor.arrow_forward
- 1. A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: Process 1-2: Compression with PV = constant, from P₁ = 1 bar, V₁ = 2 m³ to V₂ = 0.2 m³, U₂ − U₁ = 100 kJ; 2 Process 2-3: Constant volume to P3 = P₁; Process 3-1: Constant-pressure and adiabatic process. Neglect the changes of kinetic and potential energy in all three processes. (a) Sketch the cycle on a P-V diagram; (b) Determine the net work (i.e., W12 + W23 + W31) of the cycle, in kJ; (c) Determine the heat transfer for process 2-3, in kJ. Hint: System's state variables remain unchanged after a cycle, i.e. (U₂ − U₁) + (U3 − U₂) + (U₁ − U3) = 0arrow_forwardNee help with these two homework problems.arrow_forward2.33 Carbon monoxide gas (CO) contained within a piston- Process 1-2: Expansion from p, 5 bar, V = 0.2 m' to Process 2-3: Constant-volume heating from state 2 to state Process 3-1: Constant-pressure compression to the initial V, = 1 m'. during which the pressure-volume relationship is cylinder assembly undergoes three processes in series to pV = constant. 3, where p3 5 bar. %3D state. Sketch the processes in series on p-V coordinates and msi uate the work for each process, in kJ.arrow_forward
- = 95°F and m3 = 1.5 lb/s. Refrigerant 134a The figure belows shows three components of an air-conditioning system, where T3 flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady- state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible. Air Tj = 535°R C,= 0.240 Btu/I6•°R Saturated liquid R-134a T3, ṁ3 Fan Wey = -0.2 hp Throttling valve 4 Saturated vapor P5=P4 P4 = 60 lbf/in.2 T = 528°R -Heat exchanger Modeling air as an ideal gas with constant c, = 0.240 Btu/lb· °R, determine the mass flow rate of the air, in Ib/s. i Ib/sarrow_forwardA fixed-mass system contains mass, m = 1.0 kg of air. A thermodynamic process occurs from state one to state two, where T₁ = 300 °K, P₁ = 100 kPa; T₂ = 2700 °K, P₂ = 204.9953251 kPa. Determine S₂ - S₁ = m (S₂-S₁) in kJ / °K. Note: You are required to assume constant specific heats in this problem, with Cpo = 1.004 kJ/(°K * kg); for air, the gas constant is R = 0.287 kJ/(°K * kg).arrow_forward4) Figure shows a gas contained in a vertical piston-cylinder assembly. The total mass of the piston (including shaft) is 100 kg. While the gas is slowly heated, the internal energy of the gas increases by 0.1 kJ, the potential energy of the piston-shaft combination increases by 0.2 kJ. The piston and cylinder are poor conductors, and friction between them is negligible. The local atmospheric pressure is 1 bar and approximate g as 10 m/s². The cross-sectional area of the piston is 0.01 m². Determine, (a) the work done by the gas, (b) the heat transfer to the gas, all in kJ. Patm = 1 bar Gas 0.01 m²arrow_forward
- Carbon Dioxide is contained in a piston-cylinder assembly and undergoes a cycle made of the fol- lowing processes: • Process 1-2: Constant volume from 1 bar, 300 K to 600 K • Process 2–3: Polytropic expansion with n=k until P3 = P1 • Process 3-1: Isobaric compression (a) Sketch the cycle on p-v and T-v coordinates (b) Determine the work and heat transfer in each process, in kJ/kg (c) Determine the type of cycle that this is. If it is a power cycle, compute the thermal efficiency. Otherwise, compute the coefficient of performance for a heat pump cycle.arrow_forward3. 4.50 mol of N2 gas (Cym = 20.6 J mol K') is enclosed in a piston-cylinder assembly (closed system) and undergoes the cycle depicted graphically below. Assuming N2 behaves as an ideal gas and Cm is temperature independent over the given temperature range, calculate q, w, AU, and AH for each segment. Label each segment with the type of process. Note: segment 2→3 follows the relationship PV = nRT . 1.) 20.0 L 2.) 50.0 L 3.) 5.00 bar T= T; = T, V (L) P (bar)arrow_forward2.34 Carbon monoxide gas (CO) contained within a piston- cylinder assembly undergoes three processes in series: 1- Process 1-2: Constant pressure expansion at 5 bar from V₁ 0.2 m³ to V₂ = 1 m³. Process 2-3: Constant volume cooling from state 2 to state 3 where p3 1 bar. = Process 3-1: Compression from state 3 to the initial state during which the pressure-volume relationship is pV = constant. Sketch the processes in series on p-V coordinates and evaluate the work for each process, in kJ.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license