
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
9th Edition
ISBN: 9781119321453
Author: Sonntag
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.115EP
To determine
(a)
The phase and the specific volume of R-410a
To determine
(b)
The phase and the specific volume of R-134a
To determine
(c)
The phase and the specific volume of Water
To determine
(d)
The phase and the specific volume of ammonia.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem (17): water flowing in an open channel of a rectangular cross-section with width (b) transitions from a
mild slope to a steep slope (i.e., from subcritical to supercritical flow) with normal water depths of (y₁) and
(y2), respectively.
Given the values of y₁ [m], y₂ [m], and b [m], calculate the discharge in the channel (Q) in [Lit/s].
Givens:
y1 = 4.112 m
y2 =
0.387 m
b = 0.942 m
Answers:
( 1 ) 1880.186 lit/s
( 2 ) 4042.945 lit/s
( 3 ) 2553.11 lit/s
( 4 ) 3130.448 lit/s
Problem (14): A pump is being used to lift water from an underground
tank through a pipe of diameter (d) at discharge (Q). The total head
loss until the pump entrance can be calculated as (h₁ = K[V²/2g]), h
where (V) is the flow velocity in the pipe. The elevation difference
between the pump and tank surface is (h).
Given the values of h [cm], d [cm], and K [-], calculate the maximum
discharge Q [Lit/s] beyond which cavitation would take place at the
pump entrance. Assume Turbulent flow conditions.
Givens:
h = 120.31 cm
d = 14.455 cm
K = 8.976
Q
Answers:
(1) 94.917 lit/s
(2) 49.048 lit/s
( 3 ) 80.722 lit/s
68.588 lit/s
4
Problem (13): A pump is being used to lift water from the bottom
tank to the top tank in a galvanized iron pipe at a discharge (Q).
The length and diameter of the pipe section from the bottom tank
to the pump are (L₁) and (d₁), respectively. The length and
diameter of the pipe section from the pump to the top tank are
(L2) and (d2), respectively.
Given the values of Q [L/s], L₁ [m], d₁ [m], L₂ [m], d₂ [m],
calculate total head loss due to friction (i.e., major loss) in the
pipe (hmajor-loss) in [cm].
Givens:
L₁,d₁
Pump
L₂,d2
오
0.533 lit/s
L1 =
6920.729 m
d1 =
1.065 m
L2 =
70.946 m
d2
0.072 m
Answers:
(1)
3.069 cm
(2) 3.914 cm
( 3 ) 2.519 cm
( 4 ) 1.855 cm
TABLE 8.1
Equivalent Roughness for New Pipes
Pipe
Riveted steel
Concrete
Wood stave
Cast iron
Galvanized iron
Equivalent Roughness, &
Feet
Millimeters
0.003-0.03 0.9-9.0
0.001-0.01 0.3-3.0
0.0006-0.003 0.18-0.9
0.00085
0.26
0.0005
0.15
0.045
0.000005
0.0015
0.0 (smooth) 0.0 (smooth)
Commercial steel or wrought iron 0.00015
Drawn…
Chapter 2 Solutions
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Ch. 2 - Are the pressure in the tables absolute or gauge...Ch. 2 - What is the minimum pressure for liquid carbon...Ch. 2 - When you skate on ice, a thin liquid film forms...Ch. 2 - Is it possible to have water vapor at 5 ?Ch. 2 - At higher elevations, as in mountains, air...Ch. 2 - Water at room temperature and room pressure has...Ch. 2 - Can a vapor exist below the triple point...Ch. 2 - Ice cubes can disappear and food can dry out...Ch. 2 - In Example 2.lb, is there any mass at the...Ch. 2 - Prob. 2.10P
Ch. 2 - Prob. 2.11PCh. 2 - How does a constant-v process for an ideal an as...Ch. 2 - Prob. 2.13PCh. 2 - As the pressure of a gas becomes larger, Z becomes...Ch. 2 - Carbon dioxide at 280K can be in three different...Ch. 2 - Find the lowest temperature at which it is...Ch. 2 - Water at 27C can exist in different phases,...Ch. 2 - Dry ice is the name of solid carbon dioxide. How...Ch. 2 - Prob. 2.19PCh. 2 - A substance is at 2MPa and 17C in a rigid tank....Ch. 2 - Prob. 2.21PCh. 2 - Determine the phase of water at a. T260°C.P5MPa b....Ch. 2 - Determine the phase of the substance at the given...Ch. 2 - Give the missing property of PvT and x for water...Ch. 2 - Prob. 2.25PCh. 2 - Determine whether refrigerant R410A in each of the...Ch. 2 - Prob. 2.27PCh. 2 - Fill out the following table for substance...Ch. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Determine the specific volume for R410A at these...Ch. 2 - Place the three states ac listed in previous...Ch. 2 - Find P and x for CH4 at a. T=155K,v=0.04m3/kg b....Ch. 2 - Give the specific volume of carbon dioxide at 40C...Ch. 2 - You want a pot of water to boil at 105C . How...Ch. 2 - Water at 400kPa a quality of 75 has its pressure...Ch. 2 - Prob. 2.37PCh. 2 - Saturated water vapor at 200kPa is in a...Ch. 2 - Saturated liquid water at 60C is put under...Ch. 2 - A constant pressure piston cylinder has water at...Ch. 2 - A glass jar is filled with saturated water at...Ch. 2 - Prob. 2.42PCh. 2 - Saturated vapor R4l0A at 60C has to pressure...Ch. 2 - Prob. 2.44PCh. 2 - Ammonia at 20C with a quality of 50 and a total...Ch. 2 - Repeat the previous problem if the outlet valve is...Ch. 2 - R134a is in a sealed, rigid vessel of 2m3 as...Ch. 2 - A storage tank holds methane at 120K , with a...Ch. 2 - A 400m3 storage tank is being constructed to hold...Ch. 2 - Prob. 2.50PCh. 2 - Carbon dioxide at 6000kPa,40C is cooled in a...Ch. 2 - Prob. 2.52PCh. 2 - A 1m3 tank is filled with a gas at room...Ch. 2 - Prob. 2.54PCh. 2 - A pneumatic cylinder (a piston cylinder with air)...Ch. 2 - Is it reasonable to assume that at the given...Ch. 2 - Helium in a steel tank is at 250kPa,300K with a...Ch. 2 - A spherical helium balloon l0m in diameter is at...Ch. 2 - A glass is cleaned in hot water at 35°C and placed...Ch. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - A rigid tank of 1m3 contains nitrogen gas at...Ch. 2 - Assume we have three states of saturated vapor...Ch. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - A cy1inica1 gas tank 1m long, with an inside...Ch. 2 - Ammonia in a piston cylinder arrangement is at...Ch. 2 - Find the compressibility factor (Z) for saturated...Ch. 2 - Find the compressibility factor for methane at a....Ch. 2 - Find the compressibility for carbon dioxide at 60C...Ch. 2 - What is the percent error in specific volume if...Ch. 2 - Estimate the saturation pressure of R142b at 300K...Ch. 2 - A bottle a volume of 0.1m3 contains butane with a...Ch. 2 - Find the volume of 2kg of ethylene at 270K,2500kPa...Ch. 2 - Prob. 2.76PCh. 2 - Argon is kept in a rigid 5m3 tank at 30C and 3MPa...Ch. 2 - Prob. 2.78PCh. 2 - A new refrigerant, R152a . is stored as a liquid...Ch. 2 - Determine the pressure of nitrogen at...Ch. 2 - Prob. 2.81PCh. 2 - Determine the pressure of nitrogen at...Ch. 2 - Carbon dioxide at 60C is pumped at a very high...Ch. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - A tank contains 8.35kg of methane in 0.1m3 at 250K...Ch. 2 - Do the previous problem using the Redlich-Kwong...Ch. 2 - Prob. 2.88PCh. 2 - Determine the unknowns of T, v and x if two phase...Ch. 2 - Prob. 2.90PCh. 2 - Give the phase and the missing properties of P, T,...Ch. 2 - Refrigerant R410A in a piston/cylinder arrangement...Ch. 2 - Water in a piston cylinder is at 90C,100kPa , and...Ch. 2 - A tank contains 2kg of saturated ammonia vapor at...Ch. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Determine the mass of methane gas stored in a 2m3...Ch. 2 - Prob. 2.98PCh. 2 - What is the percent error in pressure if the ideal...Ch. 2 - Prob. 2.100PCh. 2 - Use a linear interpolation to estimate the missing...Ch. 2 - Use a linear interpolation to estimate Tsat at...Ch. 2 - Use a double linear interpolation to find the...Ch. 2 - Cabbage needs to be cooked (boiled) at 250 F. What...Ch. 2 - Prob. 2.105EPCh. 2 - If I have 1ft3 of ammonia at 15psia,60F , what is...Ch. 2 - Prob. 2.107EPCh. 2 - Prob. 2.108EPCh. 2 - A substance is at 300lbf/in.2,65F in a rigid tank....Ch. 2 - For water at 1 atm with a quality of 10 find the...Ch. 2 - Prob. 2.111EPCh. 2 - Determine the phase of the substance at the given...Ch. 2 - Prob. 2.113EPCh. 2 - Prob. 2.114EPCh. 2 - Prob. 2.115EPCh. 2 - Give the missing property of P, T, v, and x for a....Ch. 2 - Saturated liquid water at 150F is put under...Ch. 2 - Prob. 2.118EPCh. 2 - You want a pot of water to boil at 220F . How...Ch. 2 - Prob. 2.120EPCh. 2 - Saturated vapor R4l0A at 100F has its pressure...Ch. 2 - Prob. 2.122EPCh. 2 - Prob. 2.123EPCh. 2 - A pressure cooker has the lid screwed on tight. A...Ch. 2 - Prob. 2.125EPCh. 2 - Repeat the previous problem if the outlet valve is...Ch. 2 - Prob. 2.127EPCh. 2 - Prob. 2.128EPCh. 2 - A cylindrical gas tank 3ft long, with an inside...Ch. 2 - A spherical helium balloon 30ft in diameter is at...Ch. 2 - Helium in a steel tank s at 36psia , 540R with a...Ch. 2 - A 35ft3 rigid tank has propane at 25psia,540R and...Ch. 2 - What is the percent error in specific volume if...Ch. 2 - Air in a car tire is initially at 10F and 30psia ....Ch. 2 - Prob. 2.135EPCh. 2 - Prob. 2.136EPCh. 2 - R4l0A at 200psia , 100F is cooled in a closed...Ch. 2 - Refrigerant- 410A in a piston cylinder arrangement...Ch. 2 - A substance is at 70F,300Ibf/in.2 in a 10ft3 tank....Ch. 2 - Estimate the saturation pressure of R142b at 540R...Ch. 2 - Determine the mass of an ethane gas stored in a...Ch. 2 - Determine the pressure of R410Aat100F,v=0.2ft3/ibm...Ch. 2 - Prob. 2.143EP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The flow rate is 12.275 Liters/s and the diameter is 6.266 cm.arrow_forwardAn experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (20): Given the value of APm/Lm [kPa/m], and assuming pressure coefficient similitude, calculate the drop in the pressure per unit length of the water main (APP/Lp) in [Pa/m]. Givens: AP M/L m = 590.637 kPa/m meen Answers: ( 1 ) 59.369 Pa/m ( 2 ) 73.83 Pa/m (3) 95.443 Pa/m ( 4 ) 44.444 Pa/m *******arrow_forwardFind the reaction force in y if Ain = 0.169 m^2, Aout = 0.143 m^2, p_in = 0.552 atm, Q = 0.367 m^3/s, α = 31.72 degrees. The pipe is flat on the ground so do not factor in weight of the pipe and fluid.arrow_forward
- Find the reaction force in x if Ain = 0.301 m^2, Aout = 0.177 m^2, p_in = 1.338 atm, Q = 0.669 m^3/s, and α = 37.183 degreesarrow_forwardProblem 5: Three-Force Equilibrium A structural connection at point O is in equilibrium under the action of three forces. • • . Member A applies a force of 9 kN vertically upward along the y-axis. Member B applies an unknown force F at the angle shown. Member C applies an unknown force T along its length at an angle shown. Determine the magnitudes of forces F and T required for equilibrium, assuming 0 = 90° y 9 kN Aarrow_forwardProblem 19: Determine the force in members HG, HE, and DE of the truss, and state if the members are in tension or compression. 4 ft K J I H G B C D E F -3 ft -3 ft 3 ft 3 ft 3 ft- 1500 lb 1500 lb 1500 lb 1500 lb 1500 lbarrow_forward
- Problem 14: Determine the reactions at the pin A, and the tension in cord. Neglect the thickness of the beam. F1=26kN F2 13 12 80° -2m 3marrow_forwardProblem 22: Determine the force in members GF, FC, and CD of the bridge truss and state if the members are in tension or compression. F 15 ft B D -40 ft 40 ft -40 ft 40 ft- 5 k 10 k 15 k 30 ft Earrow_forwardProblem 20: Determine the force in members BC, HC, and HG. After the truss is sectioned use a single equation of equilibrium for the calculation of each force. State if the members are in tension or compression. 5 kN 4 kN 4 kN 3 kN 2 kN B D E F 3 m -5 m- -5 m- 5 m 5 m-arrow_forward
- An experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (19): Given the value of Qp [m³/s], and assuming Reynolds number similitude between the water main and experimental tube, calculate the flow rate in the model tube (Qm) in [lit/s]. = 30.015 m^3/sarrow_forwardProblem 11: The lamp has a weight of 15 lb and is supported by the six cords connected together as shown. Determine the tension in each cord and the angle 0 for equilibrium. Cord BC is horizontal. E 30° B 60° Aarrow_forwardProblem 10: If the bucket weighs 50 lb, determine the tension developed in each of the wires. B $30° 5 E D 130°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Chemical and Phase Equilibrium; Author: LearnChemE;https://www.youtube.com/watch?v=SWhZkU7e8yw;License: Standard Youtube License