
Concept explainers
(a)
To describe: Whether the graph is function and if it is a function then whether it is one-to-one.
(a)

Explanation of Solution
The given graph is,
Figure (1)
Use vertical line test to find whether the given graph in Figure (1) is function or not.
Vertical line test states that, if a vertical line intersects the graph at more than one point than the graph is not a function.
Use horizontal line test to find whether the function is one-to-one.
Horizontal line states that if a horizontal line intersects the function more than once than the function is not one-to-one.
Draw a vertical line and horizontal line as shown below,
Figure (2)
From Figure (2) observe that line a intersect the graph at only one point p and line b intersect the graph of function at one point q.
The vertical line intersects at one point and horizontal line also intersects at one point.
Thus, the given graph is a function and it is one-to-one.
(b)
To describe: Whether the graph is function and if it is a function then whether it is one-to-one.
(b)

Explanation of Solution
The given graph is,
Figure (3)
Use vertical line test to find whether the given graph in Figure (1) is function or not.
Vertical line test states that, if a vertical line intersects the graph at more than one point than the graph is not a function.
Use horizontal line test to find whether the function is one-to-one.
Horizontal line states that if a horizontal line intersects the function more than once than the function is not one-to-one.
Draw a vertical line and a horizontal line as shown below,
Figure (4)
From Figure (4) it can be observe that line a intersect at only one point r and line b intersect the function at three points s, q and p.
Vertical line intersects at only one point. So the graph is a function.
Horizontal line intersects at more than one point. So, the function is not one-to-one.
Thus, the given graph is a function but not one-to-one.
(c)
To describe: Whether the graph is function and if it is a function then whether it is one-to-one.
(c)

Explanation of Solution
The given graph is,
Figure (5)
Use vertical line test to find whether the given graph in Figure (5) is function or not.
Vertical line test states that, if a vertical line intersects the graph at more than one point than the graph is not a function.
Use horizontal line test to find whether the function is one-to-one.
Horizontal line states that if a horizontal line intersects the function more than once than the function is not one-to-one.
Draw a vertical line and a horizontal line as shown below,
Figure (6)
From Figure (2) it can be observe that vertical line a intersect at points p and r. The horizontal line b intersect the function at points q and s.
So, vertical line intersects at more than one point and horizontal line also intersects at more than one point.
Thus, the given graph is not a function and not one-to-one.
(d)
To describe: Whether the graph is function and if it is a function then whether it is one-to-one.
(d)

Explanation of Solution
The given graph is,
Figure (7)
Use vertical line test to find whether the given graph in Figure (7) is function or not.
Vertical line test states that, if a vertical line intersects the graph at more than one point than the graph is not a function.
Use horizontal line test to find whether the function is one-to-one.
Horizontal line states that if a horizontal line intersects the function more than once than the function is not one-to-one.
Draw a vertical line and horizontal line as shown below,
Figure (8)
From Figure (8) it can be observe that vertical line a intersects at two points p and q. The horizontal line b intersects the function at only one point r.
Vertical line intersects the graph at more than one point and horizontal line intersects at only one point.
Thus, the given graph is a not a function but one-to-one.
Chapter 2 Solutions
Precalculus - A Custom Text for UNLV
- Calculus lll May I please have the solutions for the following examples? Thank youarrow_forwardCalculus lll May I please have the solutions for the following exercises that are blank? Thank youarrow_forwardThe graph of 2(x² + y²)² = 25 (x²-y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (3,1). -10 Write the expression for the slope in terms of x and y. slope = 4x³ + 4xy2-25x 2 3 4x²y + 4y³ + 25y Write the equation for the line tangent to the point (3,1). LV Q +arrow_forward
- Find the equation of the tangent line at the given value of x on the curve. 2y3+xy-y= 250x4; x=1 y=arrow_forwardFind the equation of the tangent line at the given point on the curve. 3y² -√x=44, (16,4) y=] ...arrow_forwardFor a certain product, cost C and revenue R are given as follows, where x is the number of units sold in hundreds. Cost: C² = x² +92√x+56 Revenue: 898(x-6)² + 24R² = 16,224 dC a. Find the marginal cost at x = 6. dx The marginal cost is estimated to be $ ☐ . (Do not round until the final answer. Then round to the nearest hundredth as needed.)arrow_forward
- The graph of 3 (x² + y²)² = 100 (x² - y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (4,2). АУ -10 10 Write the expression for the slope in terms of x and y. slope =arrow_forwardUse a geometric series to represent each of the given functions as a power series about x=0, and find their intervals of convergence. a. f(x)=5/(3-x) b. g(x)= 3/(x-2)arrow_forwardAn object of mass 4 kg is given an initial downward velocity of 60 m/sec and then allowed to fall under the influence of gravity. Assume that the force in newtons due to air resistance is - 8v, where v is the velocity of the object in m/sec. Determine the equation of motion of the object. If the object is initially 500 m above the ground, determine when the object will strike the ground. Assume that the acceleration due to gravity is 9.81 m/sec² and let x(t) represent the distance the object has fallen in t seconds. Determine the equation of motion of the object. x(t) = (Use integers or decimals for any numbers in the expression. Round to two decimal places as needed.)arrow_forward
- Early Monday morning, the temperature in the lecture hall has fallen to 40°F, the same as the temperature outside. At 7:00 A.M., the janitor turns on the furnace with the thermostat set at 72°F. The time constant for the building is = 3 hr and that for the building along with its heating system is 1 K A.M.? When will the temperature inside the hall reach 71°F? 1 = 1 hr. Assuming that the outside temperature remains constant, what will be the temperature inside the lecture hall at 8:30 2 At 8:30 A.M., the temperature inside the lecture hall will be about (Round to the nearest tenth as needed.) 1°F.arrow_forwardFind the maximum volume of a rectangular box whose surface area is 1500 cm² and whose total edge length is 200 cm. cm³arrow_forwardFind the minimum cost of a rectangular box of volume 120 cm³ whose top and bottom cost 6 cents per cm² and whose sides cost 5 cents per cm². Round your answer to nearest whole number cents. Cost = cents.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





