
Concept explainers
(a)
To describe: Whether the graph is function and if it is a function then whether it is one-to-one.
(a)

Explanation of Solution
The given graph is,
Figure (1)
Use vertical line test to find whether the given graph in Figure (1) is function or not.
Vertical line test states that, if a vertical line intersects the graph at more than one point than the graph is not a function.
Use horizontal line test to find whether the function is one-to-one.
Horizontal line states that if a horizontal line intersects the function more than once than the function is not one-to-one.
Draw a vertical line and horizontal line as shown below,
Figure (2)
From Figure (2) observe that line a intersect the graph at only one point p and line b intersect the graph of function at one point q.
The vertical line intersects at one point and horizontal line also intersects at one point.
Thus, the given graph is a function and it is one-to-one.
(b)
To describe: Whether the graph is function and if it is a function then whether it is one-to-one.
(b)

Explanation of Solution
The given graph is,
Figure (3)
Use vertical line test to find whether the given graph in Figure (1) is function or not.
Vertical line test states that, if a vertical line intersects the graph at more than one point than the graph is not a function.
Use horizontal line test to find whether the function is one-to-one.
Horizontal line states that if a horizontal line intersects the function more than once than the function is not one-to-one.
Draw a vertical line and a horizontal line as shown below,
Figure (4)
From Figure (4) it can be observe that line a intersect at only one point r and line b intersect the function at three points s, q and p.
Vertical line intersects at only one point. So the graph is a function.
Horizontal line intersects at more than one point. So, the function is not one-to-one.
Thus, the given graph is a function but not one-to-one.
(c)
To describe: Whether the graph is function and if it is a function then whether it is one-to-one.
(c)

Explanation of Solution
The given graph is,
Figure (5)
Use vertical line test to find whether the given graph in Figure (5) is function or not.
Vertical line test states that, if a vertical line intersects the graph at more than one point than the graph is not a function.
Use horizontal line test to find whether the function is one-to-one.
Horizontal line states that if a horizontal line intersects the function more than once than the function is not one-to-one.
Draw a vertical line and a horizontal line as shown below,
Figure (6)
From Figure (2) it can be observe that vertical line a intersect at points p and r. The horizontal line b intersect the function at points q and s.
So, vertical line intersects at more than one point and horizontal line also intersects at more than one point.
Thus, the given graph is not a function and not one-to-one.
(d)
To describe: Whether the graph is function and if it is a function then whether it is one-to-one.
(d)

Explanation of Solution
The given graph is,
Figure (7)
Use vertical line test to find whether the given graph in Figure (7) is function or not.
Vertical line test states that, if a vertical line intersects the graph at more than one point than the graph is not a function.
Use horizontal line test to find whether the function is one-to-one.
Horizontal line states that if a horizontal line intersects the function more than once than the function is not one-to-one.
Draw a vertical line and horizontal line as shown below,
Figure (8)
From Figure (8) it can be observe that vertical line a intersects at two points p and q. The horizontal line b intersects the function at only one point r.
Vertical line intersects the graph at more than one point and horizontal line intersects at only one point.
Thus, the given graph is a not a function but one-to-one.
Chapter 2 Solutions
EBK PRECALCULUS: MATHEMATICS FOR CALCUL
- A helicopter pilot needs to travel to a regional airport 25 miles away. She flies at an actual heading of N16.26°E with an airspeed of 110 mph, and there is a wind blowing directly east at 20 mph. (a) Determine the compass heading that the pilot needs to reach her destination. (b) How long will it take her to reach her destination?arrow_forwardQuestion 3. the given integral is convergent or divergent: Use the comparison test to determine whether or not * sin*(x + 1) 7x3 (a) |. d.x g8 + x4 + 1 -dx (b) 2.x4 + x + 1arrow_forward-d.x tan xarrow_forward
- 48. f(x) = { 4 x if x < 2 2x 2 if x 2arrow_forwardГ 49. -x+1 if x 1 Answer ->arrow_forwardA Content X MindTap - Cengage Learning x Function Evaluations x + /ui/evo/index.html?elSBN=9780357038406&id=339416021&snapshotld=877369& GE MINDTAP , Limits, and the Derivative ⭑ វា a ANSWEI 16. Refer to the graph of the function f in the following figure. कर्ट AA C 54 -3-2 7 7 Ay 6. S 5. y=f(x) 4 3. 2. 1 -3- 34567 8 00 9 10 a. Find the value of ƒ (7). b. Find the values of x corresponding to the point(s) on the graph of ƒ located at a height of 5 units from the x-axis. c. Find the point on the x-axis at which the graph of ƒ crosses it. What is the value of f (x) at this point? d. Find the domain and range of f. MacBook Pro G Search or type URL + > % Λ & 5 6 7 29 ( 8 9 0arrow_forward
- Morgan F. - C X A Courses MindTap - Cengage Learning Х Domain of Square Roots X + gage.com/static/nb/ui/evo/index.html?elSBN 9780357038406&id=339416021&snapshotld=877369& CENGAGE MINDTAP 2: Functions, Limits, and the Derivative 47. x if x < 0 f(x) = 2x+1 if x 0 Answerarrow_forwardA Content MindTap - Cengage Learning × Function Evaluations * + c/nb/ui/evo/index.html?elSBN 9780357038406&id=339416021&snapshotld=877369& GAGE MINDTAP ions, Limits, and the Derivative 15. Refer to the graph of the function f in the following figure. 6 y = f(x) 5 4+ 3- 2- 1 + 2 -1 3 4 5 6 a. Find the value of ƒ (0). Answer-> b. Find the value of x for which (i) f (x) = 3 and (ii) f (x) = 0. Answer ▾ c. Find the domain of f. Answer + d. Find the range of f. Answer+ MacBook Proarrow_forwardAnswer-> 12. Let g be the function defined by Find g(-2), g(0), g (2), and g (4). - +1 if x <2 g(x) = √√√x-2 if x 2arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





