Concept explainers
(A)
To find: The change in
(A)
Answer to Problem 1RE
The change in y is 16.
Explanation of Solution
Given:
The function y is
Definition used:
Increments:
“For
Calculation:
Consider the function
Compute the change in x or
From the given definition, it is known that
So the value of change in x is
Compute the change in y or
Compute
Therefore, the value of
Compute
Therefore, the value of
From the given definition, it is known that
Therefore, the change in y as x changes from 1 to 3 is 16.
(B)
To find: The average rate of change of y with respect to x when the value of x changes from 1 to 3.
(B)
Answer to Problem 1RE
The average rate of change of y with respect to x is 8.
Explanation of Solution
Definition used:
Average Rate of Change:
“For
Calculation:
From part (A), the value of
Compute the average rate of change by using the above mentioned definition.
Therefore, the average rate of change of y with respect to x when the value of x changes from 1 to 3 is 8.
(C)
To find: The slope of the secant line passing through the points
(C)
Answer to Problem 1RE
The slope of the secant line is 8.
Explanation of Solution
Result used:
“The slope of the secant line joining points
Calculation:
From part (A), the value of
Compute the slope of the secant line joining points
Therefore, the slope of the secant line passing through the points
(D)
To find: The instantaneous rate of change of y with respect to x when
(D)
Answer to Problem 1RE
The instantaneous rate of change of y is 4.
Explanation of Solution
Definition used:
Instantaneous rate of change:
“For
Calculation:
Obtain instantaneous rate of change at
That is,
Obtain
From part (A),
Substitute the value of
Therefore, the instantaneous rate of change of y with respect to x at
(E)
To find: The slope of the tangent line at
(E)
Answer to Problem 1RE
The slope of the tangent line is 4.
Explanation of Solution
Formula used:
Slope of the tangent line.
The slope of the tangent line at the point
Calculation:
From part (D), the instantaneous rate of change of y with respect to x at
That is, the value of the derivative of the function
So by the above mentioned definition, the slope of the tangent line is 4.
Therefore, the slope of the tangent line at
(F)
To find: The value of
(F)
Answer to Problem 1RE
The value of
Explanation of Solution
Theorem used:
Power rule:
“If
Also,
Sum and difference property:
“If
Also,
Constant Function rule:
“If
Also,
Calculation:
Compute the derivative of
Substitute
Therefore, the value of
Want to see more full solutions like this?
Chapter 2 Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- Please solve the following Probability Problem: Show all work and complete what is askedarrow_forwardPlease solve the following probability problem. Show all work and must solve all parts HW 1.z. (Mingle)A number is called and players need to group up and enter rooms. Ifplayers do not manage to make it into the rooms in time, or if a room hasless or more players than it is supposed to have, they will be eliminated.Assume there are 200 people other than you and the number called is 10.Determine the probability that you will form the group of the correct sizein each of the following cases:a) Imagine you had no better strategy than going to each of the 200people and tossing a fair coin to determine if they will join yourgroup or not.b) Imagine everybody else is divided into 25 groups of 4 people and 20groups of 5 people. Among all the possible groups, you are choosingto join two at random.c) Imagine everybody else is divided into 20 groups of 4 people, 10groups of 2 people and 20 groups of 5 people. You are choosing tojoin two groups at random.d) Imagine everybody else is divided into 20…arrow_forwardIn Problems 17-26, solve the initial value problem. 17. dy = (1+ y²) tan x, y(0) = √√3arrow_forward
- could you explain this as well as disproving each wrong optionarrow_forwardcould you please show the computation of this by wiresarrow_forward0 n AM RIES s of of 10 m Frequency 40 Frequency 20 20 30 10 You make two histograms from two different data sets (see the following figures), each one containing 200 observations. Which of the histograms has a smaller spread: the first or the second? 40 30 20 10 0 20 40 60 0 20 20 40 60 60 80 80 100 80 100arrow_forward
- 4 Consider f(x) periodic function with period 2, coinciding with (x) = -x on the interval [,0) and being the null function on the interval [0,7). The Fourier series of f: (A) does not converge in quadratic norm to f(x) on [−π,π] (B) is pointwise convergent to f(x) for every x = R П (C) is in the form - 4 ∞ +Σ ak cos(kx) + bk sin(kx), ak ‡0, bk ‡0 k=1 (D) is in the form ak cos(kx) + bk sin(kx), ak 0, bk 0 k=1arrow_forwardTIP the aren't, the data are not sym 11 Suppose that the average salary at a certain company is $100,000, and the median salary is $40,000. a. What do these figures tell you about the shape of the histogram of salaries at this company? b. Which measure of center is more appro- priate here? c. Suppose that the company goes through a salary negotiation. How can people on each side use these summary statistics to their advantage? 6360 be 52 PART 1 Getting Off to a Statistically Significant Sarrow_forwardSolve the equation.arrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage