Concept explainers
Calculate the loads that is acting on the floor beam BE and girder AC.
Answer to Problem 1P
The uniformly distributed load acting on the floor beam BE is
The load acting at A, B, and C on the girder AC are
Explanation of Solution
Given information:
The building is a single-story building.
The building is subjected to uniformly distributed load of
Calculation:
Show the roof of the single-story storage building as shown in Figure 1.
Refer Figure 1.
The columns are denoted by A, C, D, and F.
The floor beam is denoted by BE.
The girders are denoted by AC and DF.
Show the tributary area of the floor beam BE as shown in Figure 2.
Refer Figure 2.
The tributary area of the floor beam BE is denoted by the shaded area.
Calculate the tributary area of the floor beam BE
The length of the floor beam BE is
Calculate the uniformly distributed load
Substitute
Show the uniformly distributed load acting on the floor beam BE as shown in Figure 3.
Refer Figure 3.
The reactions at B and E are denoted by
The loading on the floor beam BE is symmetrical.
Calculate the value of
Show the uniformly distributed load acting on the floor beam BE as shown in Figure 4.
Refer Figure 4.
Thus, the uniformly distributed load acting on the floor beam BE is
Show the tributary area of the girder AC as shown in Figure 5.
Refer Figure 5.
The tributary area of the girder AC is denoted by the shaded area.
Calculate the tributary area of the girder AC
Calculate the load
Substitute
The total load acting on the tributary area of the girder AC is
Almost half the load acts at the junction of the floor beam BE and the girder AC. Then,
The load acting at B is
The remaining half of the load acts equally on the column A and C. Then,
The load acting at A is
Show the load acting on the girder AC as shown in Figure 6.
Refer Figure 6.
The reactions at A and C are denoted by
The loading on the girder AC is symmetrical.
Calculate the value of
Show the load acting on the girder AC as shown in Figure 7.
Refer Figure 7.
Thus, the load acting at A, B, and C on the girder AC are
Want to see more full solutions like this?
Chapter 2 Solutions
Structural Analysis (MindTap Course List)
- 6. Draw the shear and moment diagrams for the beam. 10 kN 10 kN/m 1 m 2 m. Aarrow_forward3. Identify and label the key components that make up the low-slope roofing system in the diagram below. (5 points)arrow_forwardASSIGNMENT. 1. The following figure is a billboard sketch, design the members. Hint, the billboard is usually designed against wind loads and its own self weight. For the dimensions, you can visit existing billboards to see usual dimensions. 3D Viewarrow_forward
- In order to solve the frame given below with the Force Method, remove restraints from joints A and G and draw only the bending moment diagrams Mo, M₁, M2 and M3 for this case. (25 Pts.) Note: Only bending moment diagrams that are used for the solution are required. There is no need to do any further calculations. 4 kN B I E D 2 kN/m H 3 m 3 m 4 m + 2 m 4marrow_forwardplease show complete solution with formulaarrow_forwardplease show complete solution, thank youarrow_forward
- please show complete solution, step by step, thanksarrow_forward1. What is the weight of each block shown below in pounds? A) 2’x2’x10’ Steel Bar w=490lb/ft^3 B) 5’x4’x3’ Concrete Block w=150lb/ft^3 A) 3’x10’x2’ Wood block w=50lb/ft^3 2.The 6” thick, 20’x25’ concrete slab weights 150lbs/ft^3 and has an area load of 50lbs/ft^2 (psf). What is the total load of the floor?arrow_forwardLab Assignment #2 Loads: UDL and Concentrated Name: TA 1. Use the provided beam models to solve for the equivalent concentrated load of each beam configuration. Draw the loading conditions showing the equivalent concentrated load(s). a) w = 30lbs/ft 6ft 6ft c) w = 50lbs/ft 12ft w = 70lbs/ft b) 4ft w = 20lbs/ft w = 40lbs/ft d) 9ft 2. Find the equivalent concentrated load(s) for the bags of cement stacked on the dock as shown here. Each bag weighs 100 lbs and is 12 inches long. Draw the loading conditions for each showing the equivalent concentrated load(s). 1 bag = 100lbs L= 12 ft L= 6ft L= 8ftarrow_forward
- please show the complete solution, step by step process, thanksarrow_forwardThe rectangular gate shown in figure rotates about an axis through N. If a=3.3 ft,b=1.3 ft, d=2 ft, and the width perpendicular to the plane of the figure is 3 ft, what torque(applied to the shaft through N) is required to hold the gate closed?arrow_forwardAn elevated tank feeds a simple pipe system as shown. There is a fire hydrant atpoint C. The minimum allowable pressure at point C is 22 psig for firefighting requirements.What are the maximum static head (in ft) as well as pressure (in psig) at point C (i.e. nodischarge in the system)? Do we meet the pressure requirement for firefighting? (Please donot worry about L or d in the figure below)arrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningArchitectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning