
Which of the following binary operations are closed?
a. subtraction of positive integers
b. division of nonzero integers
c. function composition of polynomials with real coefficients
d. multiplication of
e. exponentiation of integers
a.

Whether the given set is closed or not.
Answer to Problem 1E
The given set of positive integers is not closed under subtraction operation.
Explanation of Solution
Given:
Set of positive integers and operation is subtraction.
Concept Used:
An set G is said to be closed under operation
Calculation:
Given setof positive integers is not closedunder the operation subtraction as because there exist some elements
The result,
Hence the given set of positive integers is not closed under subtraction operation.
Conclusion:
The given setof positive integers is not closed under subtraction operation.
b.

Whether the given set is closed or not.
Answer to Problem 1E
The set of non zero integers is not closed under division operation.
Explanation of Solution
Given:
Set is non zero integers and operation is division
Concept Used:
An set G is said to be closed under operation
Calculation:
Given set non zero of integers is not closed under the operation division as because there exist some elements
The result
Hence the given set of non zero integers is not closed under division operation.
Conclusion:
The the given set of non zero integers is not closed under division operation
c.

Whether the given set is closed or not.
Answer to Problem 1E
The given set of polynomial functions with real coefficients is closed under composion.
Explanation of Solution
Given:
Set of polynomial functions with real coefficients and operation is composition.
Concept Used:
An set G is said to be closed under operation
Calculation:
Given set is closed under the operation composition
Thus
Hence the Set of polynomial functions with real coefficients is closed under the operation composition.
Conclusion:
The given the Set of polynomial functions with real coefficients is closed under the operation composition.
d.

Whether the given set is closed or not.
Answer to Problem 1E
The given set of matrix of order
Explanation of Solution
Given:
Set of matrix of order
Concept Used:
An set G is said to be closed under operation
Calculation:
Given set of matrix of order
Thus
Hence the given set of matrix of order
Conclusion:
The given set of matrix of order
e.

Whether the given set is closed or not.
Answer to Problem 1E
The given set of integers is not closed under exponent operation.
Explanation of Solution
Given:
Set of integers and operation is exponent.
Concept Used:
An set G is said to be closed under operation
Calculation:
Given set of integers is not closed under the exponent as because there exist some elements
The result,
Hence the given set of integers is not closed under exponent operation.
Conclusion:
The given set of integers is not closed under exponent operation.
Want to see more full solutions like this?
Chapter 2 Solutions
Contemporary Abstract Algebra
- Dalia buys 20 collectible gems per month. Grace sells 10 gems from her collection of 120 each month. When will Dalia have more gems than Grace? Show your work.arrow_forwardSolve the following system of equations. Show all work and solutions.y = 2x2 + 6x + 1y = −4x2 + 1arrow_forwardSolve the following systems of equations and show all work.y = x2 + 3y = x + 5arrow_forward
- Write an equation for the function shown. You may assume all intercepts and asymptotes are on integers. The blue dashed lines are the asymptotes. 10 9- 8- 7 6 5 4- 3- 2 4 5 15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 1 1 2 3 -1 -2 -3 -4 1 -5 -6- -7 -8- -9 -10+ 60 7 8 9 10 11 12 13 14 15arrow_forwardUse the graph of the polynomial function of degree 5 to identify zeros and multiplicity. Order your zeros from least to greatest. -6 3 6+ 5 4 3 2 1 2 -1 -2 -3 -4 -5 3 4 6 Zero at with multiplicity Zero at with multiplicity Zero at with multiplicityarrow_forwardUse the graph to identify zeros and multiplicity. Order your zeros from least to greatest. 6 5 4 -6-5-4-3-2 3 21 2 1 2 4 5 ૪ 345 Zero at with multiplicity Zero at with multiplicity Zero at with multiplicity Zero at with multiplicity པ་arrow_forward
- Use the graph to write the formula for a polynomial function of least degree. -5 + 4 3 ♡ 2 12 1 f(x) -1 -1 f(x) 2 3. + -3 12 -5+ + xarrow_forwardUse the graph to identify zeros and multiplicity. Order your zeros from least to greatest. 6 -6-5-4-3-2-1 -1 -2 3 -4 4 5 6 a Zero at with multiplicity Zero at with multiplicity Zero at with multiplicity Zero at with multiplicityarrow_forwardUse the graph to write the formula for a polynomial function of least degree. 5 4 3 -5 -x 1 f(x) -5 -4 -1 1 2 3 4 -1 -2 -3 -4 -5 f(x) =arrow_forward
- Write the equation for the graphed function. -8 ง -6-5 + 5 4 3 2 1 -3 -2 -1 -1 -2 4 5 6 6 -8- f(x) 7 8arrow_forwardWrite the equation for the graphed function. 8+ 7 -8 ง A -6-5 + 6 5 4 3 -2 -1 2 1 -1 3 2 3 + -2 -3 -4 -5 16 -7 -8+ f(x) = ST 0 7 8arrow_forwardThe following is the graph of the function f. 48- 44 40 36 32 28 24 20 16 12 8 4 -4 -3 -1 -4 -8 -12 -16 -20 -24 -28 -32 -36 -40 -44 -48+ Estimate the intervals where f is increasing or decreasing. Increasing: Decreasing: Estimate the point at which the graph of ƒ has a local maximum or a local minimum. Local maximum: Local minimum:arrow_forward
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning




