A car can be braked to a stop from the autobahn-like speed of 200 km/h in 170 m. Assuming the acceleration is constant, find its magnitude in (a) SI units and (b) in terms of g. (c) How much time T b is required for the braking? Your reaction time T r is the time you require to perceive an emergency, move your foot to the brake, and begin the braking. If T r = 400 ms, then (d) what is T b in terms of T r , and (e) is most of the full time required to stop spent in reacting or braking? Dark sunglasses delay the visual signals sent from the eyes to the visual cortex in the brain, increasing T r . (f) In the extreme case in which T r is increased by 100 ms, how much farther does the car travel during your reaction time?
A car can be braked to a stop from the autobahn-like speed of 200 km/h in 170 m. Assuming the acceleration is constant, find its magnitude in (a) SI units and (b) in terms of g. (c) How much time T b is required for the braking? Your reaction time T r is the time you require to perceive an emergency, move your foot to the brake, and begin the braking. If T r = 400 ms, then (d) what is T b in terms of T r , and (e) is most of the full time required to stop spent in reacting or braking? Dark sunglasses delay the visual signals sent from the eyes to the visual cortex in the brain, increasing T r . (f) In the extreme case in which T r is increased by 100 ms, how much farther does the car travel during your reaction time?
A car can be braked to a stop from the autobahn-like speed of 200 km/h in 170 m. Assuming the acceleration is constant, find its magnitude in (a) SI units and (b) in terms of g. (c) How much time Tb is required for the braking? Your reaction time Tr is the time you require to perceive an emergency, move your foot to the brake, and begin the braking. If Tr = 400 ms, then (d) what is Tb in terms of Tr, and (e) is most of the full time required to stop spent in reacting or braking? Dark sunglasses delay the visual signals sent from the eyes to the visual cortex in the brain, increasing Tr. (f) In the extreme case in which Tr is increased by 100 ms, how much farther does the car travel during your reaction time?
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.