FLUID MECHANICS-EBOOK>I<
2nd Edition
ISBN: 2819480256061
Author: HIBBELER
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 112P
To determine
The reaction force at point A and B.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
6–95. The reaction of the ballast on the railway tie can be assumed uniformly distributed over its length as shown. If the wood has an allowable bending stress of σallow=1.5 ksi, determine the required minimum thickness t of the rectangular cross section of the tie to the nearest 18 in. Please include all steps. Also if you can, please explain how you found Mmax using an equation rather than using just the moment diagram. Thank you!
6–53. If the moment acting on the cross section is M=600 N⋅m, determine the resultant force the bending stress produces on the top board. Please explain each step. Please explain how you got the numbers and where you plugged them in to solve the problem. Thank you!
Solving coplanar forces
Chapter 2 Solutions
FLUID MECHANICS-EBOOK>I<
Ch. 2 - Prob. 1FPCh. 2 - The container is partially filled with oil, water,...Ch. 2 - The U-tube manometer is filled with mercury,...Ch. 2 - The tube is filled with mercury from A to B, and...Ch. 2 - The air pressure in the pipe at A is 300 kPa....Ch. 2 - Determine the absolute pressure of the water in...Ch. 2 - The bin is 1.5 m wide and is filled with water to...Ch. 2 - The bin is 2 m wide and is filled with oil to the...Ch. 2 - The 2-m-wide container is filled with water to the...Ch. 2 - Determine the resultant force of the water acting...
Ch. 2 - Determine the resultant force of the water acting...Ch. 2 - The tank is filled with water and kerosene to the...Ch. 2 - The 0.5-m-wide inclined plate holds water in a...Ch. 2 - Determine the resultant force the oil exerts on...Ch. 2 - Determine the resultant force the water exerts on...Ch. 2 - The tank has a width of 2 m and is filled with...Ch. 2 - Determine the horizontal and vertical components...Ch. 2 - The plate ABC is 2 m wide. Determine the angle θ...Ch. 2 - The cylindrical cup A of negligible weight...Ch. 2 - The 3-m-wide cart is filled with water to the...Ch. 2 - Prob. 21FPCh. 2 - Prob. 22FPCh. 2 - If the open cylindrical container rotates at ω = 8...Ch. 2 - Prob. 24FPCh. 2 - Prob. 1PCh. 2 - The oil derrick has drilled 5 km into the ground...Ch. 2 - Prob. 3PCh. 2 - Oxygen in a tank has an absolute pressure of 130...Ch. 2 - If the piezometer measures a gage pressure of 10...Ch. 2 - If the absolute pressure in a tank is 140 kPa,...Ch. 2 - The field storage tank is filled with oil. The...Ch. 2 - Prob. 8PCh. 2 - The closed tank was completely filled with carbon...Ch. 2 - The soaking bin contains ethyl alcohol used for...Ch. 2 - The soaking bin contains ethyl alcohol used for...Ch. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - The tank is filled with water and gasoline at a...Ch. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - A liquid has a density that varies with depth h,...Ch. 2 - Prob. 22PCh. 2 - In the troposphere, which extends from sea level...Ch. 2 - Prob. 24PCh. 2 - A heavy cylindrical glass is inverted and then...Ch. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Butyl carbitol, used in the production of...Ch. 2 - Determine the level h′ of water in the tube if the...Ch. 2 - Determine the pressures at points A and B. The...Ch. 2 - Determine the pressure at point C. The containers...Ch. 2 - Determine the difference in pressure pB − pA...Ch. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - A solvent used for plastics manufacturing consists...Ch. 2 - A solvent used for plastics manufacturing consists...Ch. 2 - The inverted U-tube manometer is used to measure...Ch. 2 - Solve Prob. 2-37 if the top segment is filled with...Ch. 2 - The two tanks A and B are connected using a...Ch. 2 - Prob. 40PCh. 2 - Determine the height h of the mercury in the tube...Ch. 2 -
The micro-manometer is used to measure small...Ch. 2 - The Morgan Company manufactures a micro-manometer...Ch. 2 - Determine the difference in pressure pA − pB...Ch. 2 - The pipes at A and B contain oil and the...Ch. 2 - The vertical pipe segment has an inner diameter of...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - The storage tank contains oil and water acting at...Ch. 2 - The uniform rectangular relief gate AB has a...Ch. 2 -
Determine the critical height h of the water...Ch. 2 - A swimming pool has a width of 12 ft and a side...Ch. 2 - Prob. 53PCh. 2 - The uniform control gate AB is pinned at A and...Ch. 2 - Prob. 55PCh. 2 - Determine the critical height h of the water level...Ch. 2 - The gate is 2 ft wide and is pinned at A and held...Ch. 2 - The uniform rectangular relief gate AB has a...Ch. 2 - The tide gate opens automatically when the tide...Ch. 2 - The tide gate opens automatically when the tide...Ch. 2 - The bin is used to store carbon tetrachloride, a...Ch. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - The pressure of the air at A within the closed...Ch. 2 - The uniform plate, which is hinged at C, is used...Ch. 2 - Determine the placement d of the pin on the...Ch. 2 - Determine the placement d of the pin on the...Ch. 2 - The tapered settling tank is filled with oil....Ch. 2 - The tapered settling tank is filled with oil....Ch. 2 - Ethyl alcohol is pumped into the tank, which has...Ch. 2 - The bent plate is 2 m wide and is pinned at A and...Ch. 2 -
The tank is filled to its top with an industrial...Ch. 2 - Solve Prob. 20–72 using the integration...Ch. 2 - If the tank is filled with vegetable oil,...Ch. 2 -
If the tank is filled with vegetable oil,...Ch. 2 - Prob. 76PCh. 2 - Determine the resultant force acting on the...Ch. 2 - Solve Prob. 2-77 using the integration...Ch. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - Prob. 81PCh. 2 - Prob. 82PCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - Prob. 87PCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 -
The control gate ACB is pinned at A and rests on...Ch. 2 - Prob. 91PCh. 2 -
The uniform plate, which is hinged at C, is used...Ch. 2 -
The bent plate is 1.5 m wide and is pinned at A...Ch. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - The 5-m-wide overhang is in the form of a...Ch. 2 - Determine the resultant force that water exerts on...Ch. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - A quarter-circular plate is pinned at A and tied...Ch. 2 - Prob. 105PCh. 2 - The semicircular gate is used to control the flow...Ch. 2 - Prob. 107PCh. 2 - Plate AB has a width of 1.5 m and a radius of 3 m....Ch. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Prob. 112PCh. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - Prob. 115PCh. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Prob. 118PCh. 2 - Prob. 119PCh. 2 - Prob. 120PCh. 2 - Prob. 121PCh. 2 - A glass having a diameter of 50 mm is filled with...Ch. 2 - Water in the container is originally at a height...Ch. 2 - Prob. 124PCh. 2 - Prob. 125PCh. 2 - Prob. 126PCh. 2 -
The hot-air balloon contains air having a...Ch. 2 - Prob. 128PCh. 2 - Prob. 129PCh. 2 - Prob. 130PCh. 2 - Prob. 131PCh. 2 - The truck carries an open container of water. If...Ch. 2 - Prob. 133PCh. 2 - The open rail car is 6 ft wide and filled with...Ch. 2 - Prob. 135PCh. 2 -
A large container of benzene is being transported...Ch. 2 - If the truck has a constant acceleration of 2...Ch. 2 - Prob. 138PCh. 2 - Prob. 139PCh. 2 - Prob. 140PCh. 2 - Prob. 141PCh. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Prob. 144PCh. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147PCh. 2 - Prob. 3CPCh. 2 - Prob. 4CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Complete the following problems. Show your work/calculations, save as.pdf and upload to the assignment in Blackboard. 1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in Figure 26.2 (below)? 6.0000 7118 Zero reference point 1.0005 1.0000 1.252 Bore C' bore 1.250 6.0000 .7118 0.2180 deep (3 holes) 2.6563 1.9445 3.000 diam. slot 0.3000 deep. 0.3000 wide 2.6563 1.9445arrow_forwardComplete the following problems. Show your work/calculations, save as.pdf and upload to the assignment in Blackboard. missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill). 1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in Figure 26.2 (below)? 6.0000 Zero reference point 7118 1.0005 1.0000 1.252 Bore 6.0000 .7118 Cbore 0.2180 deep (3 holes) 2.6563 1.9445 Figure 26.2 026022 (8lot and Drill Part) (Setup Instructions--- (UNITS: Inches (WORKPIECE NAT'L SAE 1020 STEEL (Workpiece: 3.25 x 2.00 x0.75 in. Plate (PRZ Location 054: ' XY 0.0 - Upper Left of Fixture TOP OF PART 2-0 (Tool List ( T02 0.500 IN 4 FLUTE FLAT END MILL #4 CENTER DRILL Dashed line indicates- corner of original stock ( T04 T02 3.000 diam. slot 0.3000 deep. 0.3000 wide Intended toolpath-tangent- arc entry and exit sized to programmer's judgment…arrow_forwardA program to make the part depicted in Figure 26.A has been created, presented in figure 26.B, but some information still needs to be filled in. Compute the tool locations, depths, and other missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill).arrow_forward
- We consider a laminar flow induced by an impulsively started infinite flat plate. The y-axis is normal to the plate. The x- and z-axes form a plane parallel to the plate. The plate is defined by y = 0. For time t <0, the plate and the flow are at rest. For t≥0, the velocity of the plate is parallel to the 2-coordinate; its value is constant and equal to uw. At infinity, the flow is at rest. The flow induced by the motion of the plate is independent of z. (a) From the continuity equation, show that v=0 everywhere in the flow and the resulting momentum equation is მu Ət Note that this equation has the form of a diffusion equation (the same form as the heat equation). (b) We introduce the new variables T, Y and U such that T=kt, Y=k/2y, U = u where k is an arbitrary constant. In the new system of variables, the solution is U(Y,T). The solution U(Y,T) is expressed by a function of Y and T and the solution u(y, t) is expressed by a function of y and t. Show that the functions are identical.…arrow_forwardPart A: Suppose you wanted to drill a 1.5 in diameter hole through a piece of 1020 cold-rolled steel that is 2 in thick, using an HSS twist drill. What values if feed and cutting speed will you specify, along with an appropriate allowance? Part B: How much time will be required to drill the hole in the previous problem using the HSS drill?arrow_forward1.1 m 1.3 m B 60-mm diameter Brass 40-mm diameter Aluminum PROBLEM 2.52 - A rod consisting of two cylindrical portions AB and BC is restrained at both ends. Portion AB is made of brass (E₁ = 105 GPa, α = 20.9×10°/°C) and portion BC is made of aluminum (Ę₁ =72 GPa, α = 23.9×10/°C). Knowing that the rod is initially unstressed, determine (a) the normal stresses induced in portions AB and BC by a temperature rise of 42°C, (b) the corresponding deflection of point B.arrow_forward
- 30 mm D = 40 MPa -30 mm B C 80 MPa PROBLEM 2.69 A 30-mm square was scribed on the side of a large steel pressure vessel. After pressurization, the biaxial stress condition at the square is as shown. For E = 200 GPa and v=0.30, determine the change in length of (a) side AB, (b) side BC, (c) diagnonal AC.arrow_forwardPlease solve in detail this problem thank youarrow_forward0,5 mm 450 mm 350 mm Bronze A = 1500 mm² E = 105 GPa प 21.6 × 10-PC Aluminum A = 1800 mm² £ = 73 GPa = a 23.2 × 10-PC PROBLEM 2.58 Knowing that a 0.5-mm gap exists when the temperature is 24°C, determine (a) the temperature at which the normal stress in the aluminum bar will be equal to -75 MPa, (b) the corresponding exact length of the aluminum bar.arrow_forward
- 0.5 mm 450 mm -350 mm Bronze Aluminum A 1500 mm² A 1800 mm² E 105 GPa E 73 GPa K = 21.6 X 10 G < = 23.2 × 10-G PROBLEM 2.59 Determine (a) the compressive force in the bars shown after a temperature rise of 82°C, (b) the corresponding change in length of the bronze bar.arrow_forwardThe truss shown below sits on a roller at A and a pin at E. Determine the magnitudes of the forces in truss members GH, GB, BC and GC. State whether they are in tension or compression or are zero force members.arrow_forwardA weight (W) hangs from a pulley at B that is part of a support frame. Calculate the maximum possible mass of the weight if the maximum permissible moment reaction at the fixed support is 100 Nm. Note that a frictionless pin in a slot is located at C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY