PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES
PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES
10th Edition
ISBN: 9781337888509
Author: SERWAY
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 10P

(a) Use the data in Problem 3 to construct a smooth graph of position versus time. (b) By constructing tangents to the x(t) curve, find the instantaneous velocity of the car at several instants. (c) Plot the instantaneous velocity versus time and, from this information, determine the average acceleration of the car. (d) What was the initial velocity of the car?

(a)

Expert Solution
Check Mark
To determine

The graph of position versus time.

Answer to Problem 10P

Therefore, the smooth graph of position versus time is shown in Figure I.

Explanation of Solution

The following table contains the data of position of the car at various time instants.

t(s)01.02.03.04.05.0
x(m)02.39.220.736.857.5

Draw the graph of position versus time for the derby car.

PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES, Chapter 2, Problem 10P , additional homework tip  1

Figure I

In the shown graph, the position of the car at various time instants is plotted in the vertical axis against the time along horizontal direction.

Conclusion:

Therefore, the smooth graph of position versus time is shown in Figure I.

(b)

Expert Solution
Check Mark
To determine

The instantaneous velocity of the car at various time instants.

Answer to Problem 10P

The instantaneous velocity of the car at t=1s is 4.6m/s, at t=2s is 9.0m/s, at t=3s is 14m/s, at t=4s is 18m/s and at t=5.0s is 23m/s.

Explanation of Solution

The following table contains the data of position of the car at various time instants.

t(s)01.02.03.04.05.0
x(m)02.39.220.736.857.5

The instantaneous velocity is the slope of the tangent of the position versus time graph at an instant.

Formula to calculate the slope of the tangent is,

vt=1s=ΔxΔt                                                                    (I)

Here, vt=1s is the instantaneous velocity of the car or the slope of the tangent at t=1s, Δx is the position interval of the car and Δt is the time interval

Draw the tangent line at the time instant of t=1s in the graph of position versus time for the derby car.

PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES, Chapter 2, Problem 10P , additional homework tip  2

Figure II

Substitute 4.6m for Δx and 1s for Δt in the above equation to find vt=1s.

    vt=1s=4.6m1s=4.6m/s

Therefore, the instantaneous velocity of the car at t=1s is 4.6m/s.

Draw the tangent line at the time instant of t=2s in the graph of position versus time for the derby car.

PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES, Chapter 2, Problem 10P , additional homework tip  3

Figure III

Substitute 36m for Δx and 4.0s for Δt in the above equation to find vt=1s.

    vt=1s=36m4.0s=9.0m/s

Therefore, the instantaneous velocity of the car at t=2s is 9.0m/s.

Draw the tangent line at the time instant of t=3s in the graph of position versus time for the derby car.

PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES, Chapter 2, Problem 10P , additional homework tip  4

Figure IV

Substitute 49m for Δx and 3.4s for Δt in the above equation to find vt=1s.

    vt=1s=49m3.4s=14m/s

Therefore, the instantaneous velocity of the car at t=3s is 14m/s.

Draw the tangent line at the time instant of t=4s in the graph of position versus time for the derby car.

PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES, Chapter 2, Problem 10P , additional homework tip  5

Figure V

Substitute 54m for Δx and 3s for Δt in the above equation to find vt=1s.

    vt=1s=54m3s=18m/s

Therefore, the instantaneous velocity of the car at t=4s is 18m/s.

Draw the tangent line at the time instant of t=4s in the graph of position versus time for the derby car.

PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES, Chapter 2, Problem 10P , additional homework tip  6

Figure VI

Substitute 58m for Δx and 2.5s for Δt in the above equation to find vt=1s.

    vt=1s=58m2.5s=23m/s

Conclusion:

Therefore, the instantaneous velocity of the car at t=1s is 4.6m/s, at t=2s is 9.0m/s, at t=3s is 14m/s, at t=4s is 18m/s and at t=5.0s is 23m/s.

(c)

Expert Solution
Check Mark
To determine

The average acceleration of the car.

Answer to Problem 10P

The average acceleration of the car is 2.3m/s2.

Explanation of Solution

The following table contains the instantaneous velocity of the car at various times instant.

t(s)1.02.03.04.05.0
v(t)m/s4.69.0141823

The graph of instantaneous velocity versus time for the derby car is shown below.

PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES, Chapter 2, Problem 10P , additional homework tip  7

Figure VII

The figure VII shows that velocity of the car increases linearly, it means the acceleration of the car is constant throughout the motion.

Thus, the slope of this graph gives the average acceleration of the car.

Formula to calculate the slope of versus time graph is,

  a=ΔvΔt                                                                    (I)

Here, a is the average acceleration, Δv is the velocity interval and Δt is the time interval

Substitute 23m for Δx and 5.0s for Δt in the above equation to find vt=1s.

    vt=1s=23m/s5.0s=4.6m/s2

From the graph, the slope of the graph is 4.6m/s2.

Conclusion:

Therefore, the average acceleration of the car is 4.6m/s2.

(d)

Expert Solution
Check Mark
To determine

The initial velocity of the car.

Answer to Problem 10P

The initial velocity of the car is zero.

Explanation of Solution

The equation for the velocity of the car obtained from the graph is,

    v(t)=(2.3m/s2)t                          (I)

The first equation of motion gives the velocity of an object at any instant.

    v(t)=vi(t)+at                              (II)

Here, vi(t) is the initial velocity of the car.

Compare equation (I) and (II).

    vi(t)=0

Thus, the initial velocity of the car is zero.

Conclusion:

Therefore, the initial velocity of the car is zero.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .
An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20

Chapter 2 Solutions

PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES

Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Why is the following situation impossible?...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - You are observing the poles along the side of the...Ch. 2 - Why is the following situation impossible? Emily...Ch. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - The height of a helicopter above the ground is...Ch. 2 - A ball is thrown upward from the ground with an...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - You have been hired by the prosecuting attorney as...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - Automotive engineers refer to the time rate of...Ch. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Hannah tests her new sports car by racing with...Ch. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Lisa rushes down onto a subway platform to find...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - In a womens 100-m race, accelerating uniformly,...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY