(a)
Interpretation:
For burning of phosphorus in excess oxygen, balanced chemical equation has to be written.
(a)

Explanation of Solution
Phosphorus belongs to Group VA in periodic table. It is a non-metal. Non-metals burns with oxygen to attain highest possible oxidation state. Highest oxidation state of phosphorus is
When phosphorus burns in oxygen, phosphorus pentoxide is formed. This can be represented as,
Balanced chemical equation can be given as,
(b)
Interpretation:
(b)

Explanation of Solution
Non-metals burns in excess oxygen to form oxides that are acidic in nature. This means that they can react with water to form aqueous acid. Phosphorus pentoxide reacts with water to form phosphoric acid. This can be represented as,
Molarity of phosphoric acid formed when
Equilibrium expression can be represented for the above reaction as,
The concentration of products increases stoichiometrically until the equilibrium is reached.
|
Initial |
Change |
Equilibrium |
Equilibrium constant for phosphoric acid is
Solving the above equation,
Value of
Therefore,
(c)
Interpretation:
Balanced chemical equation for the reaction of phosphoric acid solution with calcium nitrate resulting in formation of a white precipitate has to be written and the mass of precipitate has to be calculated.
(c)

Explanation of Solution
Phosphoric acid solution reacts with aqueous calcium nitrate to form calcium phosphate. The formed calcium phosphate is precipitated as white precipitate. Chemical equation can be given as,
Balancing calcium atom: In the reactant side, there is only one calcium atom while in the product side, there are three calcium atoms. Hence, coefficient “3” has to be added before calcium nitrate in the reactant side. The chemical equation obtained is,
Balancing phosphorus atom: In the reactant side, there is only one phosphorus atom while in the product side, there are two phosphorus atoms. Hence, coefficient “2” has to be added before phosphoric acid in the reactant side. The chemical equation obtained is,
Balancing nitrogen atom: In the reactant side, there are six nitrogen atoms while in the product side, there is one nitrogen atom. Hence, coefficient “6” has to be added before nitric acid in the product side. This balances out all the atoms present in the chemical equation. The balanced chemical equation obtained is,
Mass of the precipitate obtained can be calculated by finding the limiting reactant. In the problem statement it is given that that limiting reactant is phosphoric acid. Therefore, the mass of precipitate can be calculated as,
Therefore, the mass of precipitate is
(d)
Interpretation:
Gas that is evolved on addition of zinc to the remaining solution has to be identified and the volume of gas has to be calculated at STP.
(d)

Explanation of Solution
Phosphoric acid solution reacts with aqueous calcium nitrate to form calcium phosphate. The formed calcium phosphate is precipitated as white precipitate. Balanced chemical equation can be given as,
When zinc is added to the solution, it reacts with the nitric acid to liberate hydrogen gas and metal salt. The salt formed is zinc nitrate. The chemical equation can be represented as,
The gas that is liberated is hydrogen. Mol of hydrogen that is liberated can be calculated as shown below,
Volume of hydrogen gas liberated at STP can be calculated using the molar volume of gas as shown below,
Therefore, the volume of hydrogen gas liberated is
Want to see more full solutions like this?
Chapter 19 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- If a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward(a) Sketch the 'H NMR of the following chemical including the approximate chemical shifts, the multiplicity (splitting) of all signals and the integration (b) How many signals would you expect in the 13C NMR? CH3arrow_forward
- Draw the Show the major and minor product(s) for the following reaction mechanisms for both reactions and show all resonance structures for any Explain why the major product is favoured? intermediates H-Brarrow_forwardChoose the right answerarrow_forward8. What is the major product of the following reaction? KMnO4 b a TOH OH OH C d OH "OH HO OH OHarrow_forward
- Choose the right answerarrow_forward3. Draw ALL THE POSSBILE PRODUCTS AND THE MECHANISMS WITH ALL RESONANCE STRUCTURES. Explain using the resonance structures why the major product(s) are formed over the minor product(s). H₂SO4, HONO CHarrow_forward7. Provide the product(s), starting material(s) and/or condition(s) required for the No mechanisms required. below reaction HO + H-I CI FO Br2, FeBr3 O I-Oarrow_forward
- 6. Design the most efficient synthesis of the following product starting from phenot Provide the reaction conditions for each step (more than one step is required) and explain the selectivity of each reaction. NO MECHANISMS ARE REQUIRED. OH step(s) CIarrow_forwardWhat is the skeletal structure of the product of the following organic reaction?arrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning




