EBK CHEMISTRY: AN ATOMS FIRST APPROACH
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
2nd Edition
ISBN: 9780100552234
Author: ZUMDAHL
Publisher: YUZU
bartleby

Videos

Question
Book Icon
Chapter 19, Problem 87CWP

(a)

Interpretation Introduction

Interpretation: Standard enthalpy of the reaction and change in standard entropy of the given reaction are to be determined and the temperature at which the change in standard Gibb’s energy is zero, is to be calculated.

Concept introduction: The standard enthalpy of the reaction is calculated by the formula,

ΔHreaction=ΔHformation(product)ΔHformation(reactant)

The change in standard Gipp’s free energy of the reaction is calculated as,

ΔG=ΔHTΔS

To determine: Standard enthalpy of the reaction and change in standard entropy of the given reaction.

(a)

Expert Solution
Check Mark

Answer to Problem 87CWP

Standard enthalpy of the reaction and change in standard entropy of the given reaction is +131.5kJ/mol_ and 134J/Kmol_ , respectively.

Explanation of Solution

Hydrogen gas is produced by reacting graphite with water.

C(s)+H2O(g)CO(g)+H2(g)

The standard enthalpy of formation of H2O(g) is 242kJ/mol .

The standard enthalpy of formation of CO(g) is 110.5kJ/mol .

The standard enthalpy of formation of C(s) and H2(g) is zero since the standard enthalpy of formation of free elements in their standard state is zero.

The standard enthalpy of the reaction is calculated by the formula,

ΔHreaction=ΔHformation(product)ΔHformation(reactant)

Therefore, the above equation becomes,

ΔHreaction=ΔHformation(CO(g))ΔHformation(H2O(g))

Substitute the value of ΔHformation(CO(g)) and ΔHformation(H2O(g)) in the above equation.

ΔHreaction=(110.5kJ/mol)(242kJ/mol)=110.5kJ/mol+242kJ/mol=+131.5kJ/mol_

Therefore, the standard enthalpy of the reaction is +131.5kJ/mol .

The standard entropy of H2O(g) is 189J/Kmol .

The standard entropy of CO(g) is 198J/Kmol .

The standard entropy of C(s) is 6J/Kmol .

The standard entropy of H2(g) is 131J/Kmol .

The standard entropy change of the reaction is calculated by the formula,

ΔSreaction=S(product)S(reactant)

Therefore, the above equation becomes,

ΔSreaction=[S(CO(g))+S(H2(g))][S(H2O(g))+S(C(s))]

Substitute the value of S(CO(g)) , S(H2(g)) , S(H2O(g)) and S(C(s)) in the above equation.

ΔSreaction=[198J/Kmol+131J/Kmol][189J/Kmol+6J/Kmol]=329J/Kmol195J/Kmol=134J/Kmol_

Therefore, the standard entropy change of the reaction is 134J/Kmol_ .

(b)

Interpretation Introduction

Interpretation: Standard enthalpy of the reaction and change in standard entropy of the given reaction are to be determined and the temperature at which the change in standard Gibb’s energy is zero, is to be calculated.

Concept introduction: The standard enthalpy of the reaction is calculated by the formula,

ΔHreaction=ΔHformation(product)ΔHformation(reactant)

The change in standard Gipp’s free energy of the reaction is calculated as,

ΔG=ΔHTΔS

To determine: The temperature at which the change in standard Gipp’s energy of the given reaction is zero.

(b)

Expert Solution
Check Mark

Answer to Problem 87CWP

The temperature at which the change in standard Gipp’s energy of the given reaction is zero is 981.3K_

Explanation of Solution

Given

The change in standard Gipp’s energy of the given reaction is zero.

Standard enthalpy of the reaction and change in standard entropy of the given reaction is +131.5kJ/mol and 134J/Kmol , respectively.

The change in standard Gipp’s free energy of the reaction is calculated as,

ΔG=ΔHTΔS

Substitute the value of ΔG , ΔH and ΔS in the above equation.

0=+131.5×103J/molT×134J/KmolT×134J/Kmol=131.5×103J/molT=131.5×103J/mol134J/Kmol=981.3K_

Therefore, the temperature at which the change in standard Gipp’s energy of the given reaction is zero is 981.3K_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution.  How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…

Chapter 19 Solutions

EBK CHEMISTRY: AN ATOMS FIRST APPROACH

Ch. 19 - Prob. 1QCh. 19 - Prob. 2QCh. 19 - Prob. 3QCh. 19 - Diagonal relationships in the periodic table exist...Ch. 19 - Prob. 5QCh. 19 - Prob. 6QCh. 19 - Prob. 7QCh. 19 - Prob. 8QCh. 19 - Prob. 9QCh. 19 - Prob. 10QCh. 19 - Prob. 11ECh. 19 - Prob. 12ECh. 19 - Prob. 13ECh. 19 - Prob. 14ECh. 19 - Prob. 15ECh. 19 - Prob. 16ECh. 19 - Prob. 17ECh. 19 - Prob. 18ECh. 19 - Prob. 19ECh. 19 - Prob. 20ECh. 19 - Prob. 21ECh. 19 - Prob. 22ECh. 19 - Prob. 23ECh. 19 - Prob. 24ECh. 19 - Consider element 113. What is the expected...Ch. 19 - Prob. 26ECh. 19 - Prob. 27ECh. 19 - Prob. 28ECh. 19 - Prob. 29ECh. 19 - Prob. 30ECh. 19 - Prob. 31ECh. 19 - Prob. 32ECh. 19 - Prob. 33ECh. 19 - Prob. 34ECh. 19 - The following illustration shows the orbitals used...Ch. 19 - Prob. 36ECh. 19 - Silicon is produced for the chemical and...Ch. 19 - Prob. 38ECh. 19 - Prob. 39ECh. 19 - Prob. 40ECh. 19 - Prob. 41ECh. 19 - Prob. 42ECh. 19 - Prob. 43ECh. 19 - Prob. 44ECh. 19 - Prob. 45ECh. 19 - Prob. 46ECh. 19 - Prob. 47ECh. 19 - Prob. 48ECh. 19 - Prob. 49ECh. 19 - Prob. 50ECh. 19 - Prob. 51ECh. 19 - Prob. 52ECh. 19 - Use bond energies to estimate the maximum...Ch. 19 - Prob. 54ECh. 19 - Prob. 55ECh. 19 - Prob. 56ECh. 19 - Prob. 57ECh. 19 - Prob. 58ECh. 19 - Prob. 59ECh. 19 - Describe the bonding in SO2 and SO3 using the...Ch. 19 - Prob. 61ECh. 19 - Prob. 62ECh. 19 - Prob. 63ECh. 19 - Prob. 64ECh. 19 - Prob. 65ECh. 19 - Prob. 66ECh. 19 - Prob. 67ECh. 19 - Prob. 68ECh. 19 - Prob. 69ECh. 19 - Prob. 70ECh. 19 - Prob. 71ECh. 19 - Prob. 72ECh. 19 - Prob. 73AECh. 19 - The inert-pair effect is sometimes used to explain...Ch. 19 - Prob. 75AECh. 19 - Prob. 76AECh. 19 - Prob. 77AECh. 19 - Prob. 78AECh. 19 - Prob. 79AECh. 19 - Draw Lewis structures for the AsCl4+ and AsCl6...Ch. 19 - Prob. 81AECh. 19 - Prob. 82AECh. 19 - Prob. 83AECh. 19 - Prob. 84AECh. 19 - Prob. 85AECh. 19 - Prob. 86AECh. 19 - Prob. 87CWPCh. 19 - Prob. 88CWPCh. 19 - Prob. 89CWPCh. 19 - Prob. 90CWPCh. 19 - What is the hybridization of the underlined...Ch. 19 - Prob. 92CWPCh. 19 - What is the hybridization of the central atom in...Ch. 19 - Prob. 94CWPCh. 19 - Prob. 95CWPCh. 19 - Prob. 96CWPCh. 19 - Prob. 97CPCh. 19 - Prob. 98CPCh. 19 - Prob. 99CPCh. 19 - Prob. 100CPCh. 19 - Prob. 101CPCh. 19 - Prob. 102CPCh. 19 - Prob. 103CPCh. 19 - Prob. 104CPCh. 19 - Prob. 105CPCh. 19 - Prob. 106IPCh. 19 - Prob. 107IPCh. 19 - Prob. 108IPCh. 19 - Prob. 109IPCh. 19 - Prob. 110MPCh. 19 - Prob. 111MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY