(a)
To determine: The thermodynamic quantities which are state functions out of the given quantities.
Solution: The quantities which are state functions are T , E and S out of the given quantities.
Explanation:
The state quantities are the quantities which depend on the initial and final state of the system not on the path adopted to reach the final state.
The dependence of the given thermodynamic quantities on path is explained as follows:
The temperature of the system is a state function. It does not depend on the path taken to complete the process.
The internal energy of the system is a path independent function. It only depends upon the initial and final state of the system. Thus, it is a state function.
The heat transferred from/to the system is a path dependent function. Therefore, it is not a state function.
The work done of the system depends upon the number of steps taken to complete the reaction. Therefore, it is a path dependent function.
The entropy of the system is a path independent function. It only depends upon the initial and final state of the system.
Conclusion:
The quantities which are state functions are T , E and S out of the given quantities.
To determine: The
Solution: The quantities which are state functions are
Explanation:
The state quantities are the quantities which depend on the initial and final state of the system not on the path adopted to reach the final state.
The dependence of the given thermodynamic quantities on path is explained as follows:
The temperature of the system is a state function. It does not depend on the path taken to complete the process.
The internal energy of the system is a path independent function. It only depends upon the initial and final state of the system. Thus, it is a state function.
The heat transferred from/to the system is a path dependent function. Therefore, it is not a state function.
The work done of the system depends upon the number of steps taken to complete the reaction. Therefore, it is a path dependent function.
The entropy of the system is a path independent function. It only depends upon the initial and final state of the system.
Conclusion:
The quantities which are state functions are
(b)
To determine: The thermodynamic quantities which depend upon the path taken to complete the process.
(c)
To determine: The number of reversible path between two states of the system.
(d)
To determine: The expression for the

Want to see the full answer?
Check out a sample textbook solution
Chapter 19 Solutions
CHEMISTRY THE CENTRAL SCIENCE 14TH EDI
- Use the Henderson-Hasselbalch equation to calculate pH of a buffer containing 0.050M benzoic acidand 0.150M sodium benzoate. The Ka of benzoic acid is 6.5 x 10-5arrow_forwardA. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forward
- Can I please get help with this.arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





