(a)
To determine: The thermodynamic quantities which are state functions out of the given quantities.
Solution: The quantities which are state functions are T , E and S out of the given quantities.
Explanation:
The state quantities are the quantities which depend on the initial and final state of the system not on the path adopted to reach the final state.
The dependence of the given thermodynamic quantities on path is explained as follows:
The temperature of the system is a state function. It does not depend on the path taken to complete the process.
The internal energy of the system is a path independent function. It only depends upon the initial and final state of the system. Thus, it is a state function.
The heat transferred from/to the system is a path dependent function. Therefore, it is not a state function.
The work done of the system depends upon the number of steps taken to complete the reaction. Therefore, it is a path dependent function.
The entropy of the system is a path independent function. It only depends upon the initial and final state of the system.
Conclusion:
The quantities which are state functions are T , E and S out of the given quantities.
To determine: The
Solution: The quantities which are state functions are
Explanation:
The state quantities are the quantities which depend on the initial and final state of the system not on the path adopted to reach the final state.
The dependence of the given thermodynamic quantities on path is explained as follows:
The temperature of the system is a state function. It does not depend on the path taken to complete the process.
The internal energy of the system is a path independent function. It only depends upon the initial and final state of the system. Thus, it is a state function.
The heat transferred from/to the system is a path dependent function. Therefore, it is not a state function.
The work done of the system depends upon the number of steps taken to complete the reaction. Therefore, it is a path dependent function.
The entropy of the system is a path independent function. It only depends upon the initial and final state of the system.
Conclusion:
The quantities which are state functions are
(b)
To determine: The thermodynamic quantities which depend upon the path taken to complete the process.
(c)
To determine: The number of reversible path between two states of the system.
(d)
To determine: The expression for the
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
CHEMISTRY:CENTRAL SCIENCE-W/MOD.ACCESS
- AN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3¯)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward
- Q8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor.arrow_forwardQ4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 N CH3 HÖ: H3C CI: ::arrow_forward
- Q3: Draw the Lewis structures for nitromethane (CH3NO2) and methyl nitrite (CH3ONO). Draw at least two resonance forms for each. Determine which form for each is the major resonance contributor.arrow_forwardQ1: Draw a valid Lewis structures for the following molecules. Include appropriate charges and lone pair electrons. If there is more than one Lewis structure available, draw the best structure. NH3 Sulfate Boron tetrahydride. C3H8 (linear isomer) OCN NO3 CH3CN SO2Cl2 CH3OH2*arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forward
- Please correct answer and don't used hand raitingarrow_forward9. The following reaction, which proceeds via the SN1/E1 mechanisms, gives three alkene products (A, B, C) as well as an ether (D). (a) Show how each product arises mechanistically. (b) For the alkenes, determine the major product and justify your answer. (c) What clues in the reaction as shown suggest that this reaction does not go by the SN2/E2 mechanism route? (CH3)2CH-CH-CH3 CH3OH 1 Bl CH3OH ⑧· (CH3)2 CH-CH=CH2 heat H ⑥③ (CH3)2 C = C = CH3 © СнЗ-С-Снаснз сна (CH 3 ) 2 C H G H CH 3 оснзarrow_forwardPlease Don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY